LINEAR ALGEBRA AND VECTOR ANALYSIS

$\mathrm{MATH}\ 22\mathrm{B}$

Unit 11: Determinants

LECTURE

11.1. We have already seen the determinants of 2×2 and 3×3 matrices:

$$\det \begin{bmatrix} a & b \\ c & d \end{bmatrix} = ad - bc, \quad \det \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} = aei + bfg + dhc - gec - hfa - dbi.$$

Our goal is to define the determinant for arbitrary matrices and understand the properties of the **determinant functional** det from M(n, n) to \mathbb{R} .

11.2. A permutation of a set is an invertible map π on this set. It defines a rearrangement of the set. The point x goes to $\pi(x)$. Inductively, one can see that there are $n! = n \cdot (n-1) \cdots 1$ permutations of the set $\{1, 2, \ldots, n\}$: fixing the position of first element leaves (n-1)! possibilities to permute the rest. For example, there are $6 = 3 \cdot 2 \cdot 1$ permutations of $\{1, 2, 3\}$. They are (1, 2, 3), (1, 3, 2), (2, 1, 3), (2, 3, 1), (3, 1, 2), (3, 2, 1). A permutation can be visualized in the form of a permutation matrix A. It is a Boolean matrix which has zeros everywhere except at the positions $A_{k\pi(k)}$, where it is 1. An up-crossing is a pair k < l such that $\pi(k) < \pi(l)$. When drawing out a permutation matrix, we also call it a pattern. The sign of a permutation π is defined as $\operatorname{sign}(\pi) = (-1)^u$, where u is the number of up-crossings in the pattern of π .

11.3. The **determinant** of a $n \times n$ matrix A is defined by Leibniz as the sum

$$\sum_{\pi} \operatorname{sign}(\pi) A_{1\pi(1)} A_{2\pi(2)} \cdots A_{n\pi(n)} ,$$

where π is a permutation of $\{1, 2, ..., n\}$. We see that for n = 2, we get two possible permutations, the identity permutation $\pi = (1, 2)$ and the flip $\pi = (2, 1)$. The determinant of a 2 × 2 matrix therefore is a sum of two numbers, the product of the diagonal entries minus the product of the side diagonal entries. For n = 3, we have 6 permutations and get the **Sarrus formula** stated initially above.

11.4. To organize the summation, one can first choose all the permutations for which $\pi(1) = 1$, then look at all permutations for which $\pi(1) = 2$ etc. This produces the **Laplace expansion**. Let M(i, j) denote the matrix in which the *i*'th row and *j*'th column are deleted. Its determinant is called a **minor** of A. For every $1 \le i \le n$:

Theorem: det(A) = $\sum_{j=1}^{n} (-1)^{i+j} A_{ij} \det(M(i,j))$

11.5. This expansion allows to compute the determinant a $n \times n$ matrix by reducing it to a sum of determinants of $(n - 1) \times (n - 1)$ matrices. It is still not suited to compute the determinant of a 20×20 matrix for example as we would need to sum up 20! = 2432902008176640000 elements.

11.6. The fastest way to compute determinants for general matrices is by doing a **row reduction**. To understand this, we need the following properties:

Subtracting a row from another row does not change the determinant. Swapping two rows changes the sign of the determinant. Scaling a single row by a factor λ multiplies the determinant by λ .

11.7. Let s be the number of swaps and $\lambda_1, \ldots, \lambda_k$ the scaling factors which appear when bringing A into row reduced echelon form.

Theorem: det(A) = $(-1)^{s} \lambda_1 \cdots \lambda_k det(rref(A))$

11.8. We see from this that the determinant "determines" whether a matrix is invertible or not:

Theorem: det(A) is non-zero if and only if A is invertible.

Here are more properties for $n \times n$ matrices which we prove in class:

$$\begin{split} \det(AB) &= \det(A)\det(B)\\ \det(A^{-1}) &= \det(A)^{-1}\\ \det(SAS^{-1}) &= \det(A)\\ \det(A^T) &= \det(A)\\ \det(\lambda A) &= \lambda^n \det(A)\\ \det(-A) &= (-1)^n \det(A) \end{split}$$

11.9. An important thing to keep in mind is that the determinant of a **triangular** matrix is the product of its diagonal elements.

Example: det $\begin{pmatrix} 1 & 0 & 0 & 0 \\ 4 & 5 & 0 & 0 \\ 2 & 3 & 4 & 0 \\ 1 & 1 & 2 & 1 \end{pmatrix}$ = 20.

11.10. Another useful fact is that the determinant of a **partitioned matrix** $\begin{bmatrix} A & 0 \\ 0 & B \end{bmatrix}$ is the product det(A)det(B). Example: det($\begin{bmatrix} 3 & 4 & 0 & 0 \\ 1 & 2 & 0 & 0 \\ 0 & 0 & 4 & -2 \\ 0 & 0 & 2 & 2 \end{bmatrix}$) = $2 \cdot 12 = 24$.

EXAMPLES

11.11. The determinant of a rotation matrix is either +1 or -1: Proof: we know $A^T A = 1$. So, $1 = \det(1) = \det(A^T A) = \det(A^T)\det(A) = \det(A)\det(A) = \det(A)^2$ which forces $\det(A)$ to be either 1 or -1. For a rotation in \mathbb{R}^2 the determinant is 1 for a reflection, it is -1. In general, for any rotation the determinant is 1 as we can change the angle of rotation continuously to 0 forcing the determinant to be 1. The determinant depends continuously on the matrix. It can not jump from -1 to 1. Check the proof seminar in Unit 6.

11.12. Find the determinant of the partitioned matrix

$$A = \begin{bmatrix} 3 & 3 & 7 & 3 & 7 & 1 \\ 3 & 5 & 3 & 4 & 1 & 1 \\ 0 & 0 & 4 & 3 & 1 & 1 \\ 0 & 0 & 2 & 2 & 0 & 3 \\ 0 & 0 & 0 & 0 & 2 & 1 \\ 0 & 0 & 0 & 0 & 1 & 2 \end{bmatrix}$$

The determinant is 6 * 2 * 3 = 36.

11.13. Use row reduction to compute the determinant of the following matrix:

$$A = \begin{bmatrix} 1 & 1 & 1 & 5 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 & 0 \\ 0 & 1 & 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 2 & 0 & 1 \\ 2 & 1 & 1 & 1 & 1 & 1 \end{bmatrix}$$

The answer is 8.

11.14. In this example, Laplace expansion is nice. Also row reduction works.

$$A = \begin{bmatrix} 0 & 0 & 0 & 5 & 8 & 0 \\ 3 & 1 & 3 & 4 & 0 & 0 \\ 0 & 5 & 1 & 3 & 2 & 7 \\ 0 & 0 & 7 & 1 & 3 & 0 \\ 0 & 0 & 0 & 2 & 1 & 0 \\ 0 & 0 & 0 & 0 & 9 & 0 \end{bmatrix}$$

Homework

This homework is due on Thursday, 2/28/2019.

Problem 11.1: Find the determinants of A, B, C: $A = \begin{bmatrix} a^2 & ab \\ ba & b^2 \end{bmatrix}$, $B = \begin{bmatrix} 0 & 5 & 7 & 3 & 7 & 1 \\ 6 & 0 & 0 & 0 & 1 \\ 0 & 4 & 0 & 3 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 & 3 \\ 0 & 6 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 2 & 0 & 0 \end{bmatrix}, C = \begin{bmatrix} 1 & 1 & 0 & 0 & 0 & 3 \\ 3 & 3 & 0 & 0 & 6 & 0 \\ 4 & 2 & 0 & 4 & 0 & 0 \\ 5 & 3 & 2 & 0 & 0 & 0 \\ 6 & 3 & 0 & 0 & 4 & 0 \\ 7 & 0 & 5 & 0 & 0 & 0 \end{bmatrix}$

Problem 11.2: Is the following determinant positive, zero or negative? (no technology!)

3 1]
2 2
$0^9 -1$
-5 9
22 2
$4 \ 100^9$

Problem 11.3: a) Use the Leibniz definition of determinants to show that the **partitioned matrix** satisfies det $\begin{bmatrix} A & C \\ 0 & B \end{bmatrix} = \det(A)\det(B)$. b) Assume now that A, B are $n \times n$ matrices. Can you find a formula for det $\begin{bmatrix} 0 & A \\ B & 0 \end{bmatrix}$? (It will depend on n.) c) Show that number of up-crossings of a pattern is the same if the pattern is transposed and that therefore det $(A^T) = \det(A)$.

Problem 11.4: Find the determinant of the matrix $A_{ij} = 2^{ij}$ for $i, j \le 4$.

It is	4 8	16 64	$\begin{array}{c} 64 \\ 512 \end{array}$	$\begin{array}{c} 256 \\ 4096 \end{array}$	First	scale	some	rows	to	make	the
	16	256	4096	65536							
comput	ation	n mor	e man	ageable.							

Problem 11.5: Find a formula for the determinant of the $n \times n$ matrix L(n) which has 2 in the diagonal and 1 in the side diagonals and 0 everywhere else. Compute first L(2), L(3), L(4), then $L(5) = \begin{bmatrix} 2 & 1 & 0 & 0 & 0 \\ 1 & 2 & 1 & 0 & 0 \\ 0 & 1 & 2 & 1 & 0 \\ 0 & 0 & 1 & 2 & 1 \\ 0 & 0 & 0 & 1 & 2 \end{bmatrix}$. Now, you see a pattern. Prove it by induction.

OLIVER KNILL, KNILL@MATH.HARVARD.EDU, MATH 22B, HARVARD COLLEGE, SPRING 2019