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MATH 22B

Unit 11: Determinants

Lecture

11.1. We have already seen the determinants of 2× 2 and 3× 3 matrices:

det

[
a b
c d

]
= ad− bc, det

 a b c
d e f
g h i

 = aei+ bfg + dhc− gec− hfa− dbi .

Our goal is to define the determinant for arbitrary matrices and understand the prop-
erties of the determinant functional det from M(n, n) to R.

11.2. A permutation of a set is an invertible map π on this set. It defines a re-
arrangement of the set. The point x goes to π(x). Inductively, one can see that there
are n! = n·(n−1) · · · 1 permutations of the set {1, 2, . . . , n }: fixing the position of first
element leaves (n−1)! possibilities to permute the rest. For example, there are 6 = 3·2·1
permutations of {1, 2, 3}. They are (1, 2, 3), (1, 3, 2), (2, 1, 3), (2, 3, 1), (3, 1, 2), (3, 2, 1).
A permutation can be visualized in the form of a permutation matrix A. It is a
Boolean matrix which has zeros everywhere except at the positions Akπ(k), where it
is 1. An up-crossing is a pair k < l such that π(k) < π(l). When drawing out a
permutation matrix, we also call it a pattern. The sign of a permutation π is defined
as sign(π) = (−1)u, where u is the number of up-crossings in the pattern of π.

11.3. The determinant of a n× n matrix A is defined by Leibniz as the sum∑
π

sign(π)A1π(1)A2π(2) · · ·Anπ(n) ,

where π is a permutation of {1, 2, . . . , n}. We see that for n = 2, we get two possi-
ble permutations, the identity permutation π = (1, 2) and the flip π = (2, 1). The
determinant of a 2 × 2 matrix therefore is a sum of two numbers, the product of the
diagonal entries minus the product of the side diagonal entries. For n = 3, we have 6
permutations and get the Sarrus formula stated initially above.

11.4. To organize the summation, one can first choose all the permutations for which
π(1) = 1, then look at all permutations for which π(1) = 2 etc. This produces the
Laplace expansion. Let M(i, j) denote the matrix in which the i’th row and j’th
column are deleted. Its determinant is called a minor of A. For every 1 ≤ i ≤ n:

Theorem: det(A) =
∑n

j=1(−1)i+jAijdet(M(i, j))
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11.5. This expansion allows to compute the determinant a n× n matrix by reducing
it to a sum of determinants of (n − 1) × (n − 1) matrices. It is still not suited to
compute the determinant of a 20× 20 matrix for example as we would need to sum up
20! = 2432902008176640000 elements.

11.6. The fastest way to compute determinants for general matrices is by doing a row
reduction. To understand this, we need the following properties:

Subtracting a row from another row does not change the determinant.
Swapping two rows changes the sign of the determinant.
Scaling a single row by a factor λ multiplies the determinant by λ.

11.7. Let s be the number of swaps and λ1, . . . , λk the scaling factors which appear
when bringing A into row reduced echelon form.

Theorem: det(A) = (−1)sλ1 · · ·λkdet(rref(A))

11.8. We see from this that the determinant “determines” whether a matrix is invert-
ible or not:

Theorem: det(A) is non-zero if and only if A is invertible.

Here are more properties for n× n matrices which we prove in class:

det(AB) = det(A)det(B)
det(A−1) = det(A)−1

det(SAS−1) = det(A)
det(AT ) = det(A)
det(λA) = λndet(A)
det(−A) = (−1)ndet(A)

11.9. An important thing to keep in mind is that the determinant of a triangular
matrix is the product of its diagonal elements.

Example: det(


1 0 0 0
4 5 0 0
2 3 4 0
1 1 2 1

) = 20.

11.10. Another useful fact is that the determinant of a partitioned matrix

[
A 0
0 B

]

is the product det(A)det(B). Example: det(


3 4 0 0
1 2 0 0
0 0 4 −2
0 0 2 2

) = 2 · 12 = 24.



Examples

11.11. The determinant of a rotation matrix is either +1 or −1: Proof: we know
ATA = 1. So, 1 = det(1) = det(ATA) = det(AT )det(A) = det(A)det(A) = det(A)2

which forces det(A) to be either 1 or −1. For a rotation in R2 the determinant is 1
for a reflection, it is −1. In general, for any rotation the determinant is 1 as we can
change the angle of rotation continuously to 0 forcing the determinant to be 1. The
determinant depends continuously on the matrix. It can not jump from −1 to 1. Check
the proof seminar in Unit 6.

11.12. Find the determinant of the partitioned matrix

A =


3 3 7 3 7 1
3 5 3 4 1 1
0 0 4 3 1 1
0 0 2 2 0 3
0 0 0 0 2 1
0 0 0 0 1 2

 .

The determinant is 6 ∗ 2 ∗ 3 = 36.

11.13. Use row reduction to compute the determinant of the following matrix:

A =


1 1 1 5 1 1
1 1 1 1 1 0
0 1 1 1 1 1
0 0 1 1 0 0
0 1 0 2 0 1
2 1 1 1 1 1

 .

The answer is 8.

11.14. In this example, Laplace expansion is nice. Also row reduction works.

A =


0 0 0 5 8 0
3 1 3 4 0 0
0 5 1 3 2 7
0 0 7 1 3 0
0 0 0 2 1 0
0 0 0 0 9 0

 .
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Homework

This homework is due on Thursday, 2/28/2019.

Problem 11.1: Find the determinants of A,B,C: A =

[
a2 ab
ba b2

]
,

B =


0 5 7 3 7 1
6 0 0 0 0 1
0 4 0 3 1 1
0 0 0 0 0 3
0 6 0 1 0 0
0 0 0 2 0 0

, C =


1 1 0 0 0 3
3 3 0 0 6 0
4 2 0 4 0 0
5 3 2 0 0 0
6 3 0 0 4 0
7 0 5 0 0 0


Problem 11.2: Is the following determinant positive, zero or negative?
(no technology!) 

22 1009 7 −6 3 1
1009 22 2 2 2 2

6 4 22 1 1009 −1

2 2 1009 22 −5 9
9 1 −1 1009 22 2

7 4 −1 2 4 1009

 .

Problem 11.3: a) Use the Leibniz definition of determinants to show

that the partitioned matrix satisfies det

[
A C
0 B

]
= det(A)det(B).

b) Assume now that A,B are n× n matrices. Can you find a formula for

det

[
0 A
B 0

]
? (It will depend on n.)

c) Show that number of up-crossings of a pattern is the same if the pattern
is transposed and that therefore det(AT ) = det(A).

Problem 11.4: Find the determinant of the matrix Aij = 2ij for i, j ≤ 4.

It is


2 4 8 16
4 16 64 256
8 64 512 4096
16 256 4096 65536

. First scale some rows to make the

computation more manageable.

Problem 11.5: Find a formula for the determinant of the n× n matrix
L(n) which has 2 in the diagonal and 1 in the side diagonals and 0 every-

where else. Compute first L(2), L(3), L(4), then L(5) =


2 1 0 0 0

1 2 1 0 0
0 1 2 1 0

0 0 1 2 1

0 0 0 1 2

.
Now, you see a pattern. Prove it by induction.
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