LINEAR ALGEBRA AND VECTOR ANALYSIS

MATH 22B

Unit 11: Determinants

LECTURE

11.1. We have already seen the determinants of 2 x 2 and 3 x 3 matrices:

a b c
det[z Z}zad—bc, det | d e f | =aei+0bfg+dhc— gec— hfa— dbi.
g h 1

Our goal is to define the determinant for arbitrary matrices and understand the prop-
erties of the determinant functional det from M (n,n) to R.

11.2. A permutation of a set is an invertible map 7 on this set. It defines a re-
arrangement of the set. The point x goes to 7(z). Inductively, one can see that there
aren! = n-(n—1)---1 permutations of the set {1,2,...,n }: fixing the position of first
element leaves (n—1)! possibilities to permute the rest. For example, there are 6 = 3-2-1
permutations of {1,2,3}. They are (1,2,3),(1,3,2),(2,1,3),(2,3,1),(3,1,2),(3,2,1).
A permutation can be visualized in the form of a permutation matrix A. It is a
Boolean matrix which has zeros everywhere except at the positions Ay, where it
is 1. An up-crossing is a pair k£ < [ such that 7(k) < 7(l). When drawing out a
permutation matrix, we also call it a pattern. The sign of a permutation 7 is defined
as sign(m) = (—1)%, where u is the number of up-crossings in the pattern of 7.

11.3. The determinant of a n x n matrix A is defined by Leibniz as the sum

Z sign(m) A1z (1) A2r2) -+ Anrn)

where 7 is a permutation of {1,2,...,n}. We see that for n = 2, we get two possi-
ble permutations, the identity permutation 7 = (1,2) and the flip 7 = (2,1). The
determinant of a 2 x 2 matrix therefore is a sum of two numbers, the product of the
diagonal entries minus the product of the side diagonal entries. For n = 3, we have 6
permutations and get the Sarrus formula stated initially above.

11.4. To organize the summation, one can first choose all the permutations for which

(1) = 1, then look at all permutations for which 7(1) = 2 etc. This produces the

Laplace expansion. Let M(i,j) denote the matrix in which the ¢’th row and j’th

column are deleted. Its determinant is called a minor of A. For every 1 < i < n:
Theorem: det(A) =>"  (—1)"7 A;;det(M(i, 7))
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11.5. This expansion allows to compute the determinant a n X n matrix by reducing
it to a sum of determinants of (n — 1) x (n — 1) matrices. It is still not suited to
compute the determinant of a 20 x 20 matrix for example as we would need to sum up
20! = 2432902008176640000 elements.

11.6. The fastest way to compute determinants for general matrices is by doing a row
reduction. To understand this, we need the following properties:

Subtracting a row from another row does not change the determinant.
Swapping two rows changes the sign of the determinant.
Scaling a single row by a factor A multiplies the determinant by A.

11.7. Let s be the number of swaps and Aq,..., A; the scaling factors which appear
when bringing A into row reduced echelon form.

Theorem: det(A) = (—1)°A; - Agdet(rref(A))
11.8. We see from this that the determinant “determines” whether a matrix is invert-
ible or not:

Theorem: det(A) is non-zero if and only if A is invertible.

Here are more properties for n X n matrices which we prove in class:

det(A ) det(A)det(B)
det(A™!) = det(A)™!
det(SAS 1) = det(A)
det(AT) = det(A)
det(AA) = A"det(A)
det(—A) = (—1)"det(A)

11.9. An important thing to keep in mind is that the determinant of a triangular

matrix is the product of its diagonal elements.
1 000

Example: det( ) = 20.

DN~

)
3
1

N =~ O

0
0
1

—_

11.10. Another useful fact is that the determinant of a partitioned matrix [ 161 g }

340 0
) 1 20 0
is the product det(A)det(B). Example: det( 00 4 —9 )=2-12=24.
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EXAMPLES

11.11. The determinant of a rotation matrix is either +1 or —1: Proof: we know
ATA = 1. So, 1 = det(1) = det(ATA) = det(AT)det(A) = det(A)det(A) = det(A)?
which forces det(A) to be either 1 or —1. For a rotation in R? the determinant is 1
for a reflection, it is —1. In general, for any rotation the determinant is 1 as we can
change the angle of rotation continuously to 0 forcing the determinant to be 1. The
determinant depends continuously on the matrix. It can not jump from —1 to 1. Check
the proof seminar in Unit 6.

11.12. Find the determinant of the partitioned matrix

O O N W
SO Wk W

OO OO W W
DO OO DO otWw
L V= NN |
I e

The determinant is 6 * 2 * 3 = 36.

11.13. Use row reduction to compute the determinant of the following matrix:

DO DO = =
== O =
— O =
— N = == Ot
_— O O = ==
— O~ O

The answer is 8.

11.14. In this example, Laplace expansion is nice. Also row reduction works.

0005 8 07
313400
051327
A=1007130
000210
L0000 9 0]
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HOMEWORK
This homework is due on Thursday, 2/28/2019.
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Problem 11.1: Find the determinants of A, B,C: A = {Za Zé’],

0 5 7 3 7 17 1 1 0 0 0 37

6 000 01 330060

0 40311 4 2 0 400
B=loo00003|'“ 532000

06 01 00 6 300 40

L0 00 2 0 0 L7 0 5 0 0 0]

Problem 11.2: Is the following determinant positive, zero or negative?
(no technology!)

22 100° 7 —6 3 1
100° 22 2 2 2 2
6 4 22 1 1009 =il

2 2 100° 22 -5 9

9 1 —1 100° 22 2

7 4 =il 2 4 100°

Problem 11.3: a) Use the Leibniz definition of determinants to show

that the partitioned matrix satisfies det 81 g } = det(A)det(B).
b) Assume now that A, B are n x n matrices. Can you find a formula for
det { g é }? (It will depend on n.)

¢) Show that number of up-crossings of a pattern is the same if the pattern
is transposed and that therefore det(A”) = det(A).

Problem 11.4: Find the determinant of the matrix A;; = 29 for i, j < 4.
2 4 8 16

4 16 64 256

8 64 512 4096
16 256 4096 65536
computation more manageable.

It is First scale some rows to make the

Problem 11.5: Find a formula for the determinant of the n X n matrix
L(n) which has 2 in the diagonal and 1 in the side diagonals and 0 every-

2 1.0 0 0
2 1.0 0

where else. Compute first L(2), L(3), L(4), then r)=]0 1 2 1 o0
00 1 2 1

00 0 1 2

Now, you see a pattern. Prove it by induction.
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