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Problem 1) (20 points) True or False? No justifications are needed.

1) T F
Whenever a matrix A has orthonormal columns, then ATA is the projection
matrix onto the image of A.

2) T F If ~v is an eigenvector of a 2×2 matrix A, then ~v is an eigenvector of A+A10.

3) T F If A is similar to B and A is diagonalizable, then B is diagonalizable.

4) T F
If a 2× 2 matrix A is symmetric and orthogonal, then it is a reflection at a
line.

5) T F The zero vector ~0 is an eigenvector to any eigenvalue λ because A~0 = λ~0.

6) T F The determinant of a 2× 2 rotation matrix is always equal to 1.

7) T F If A,B are similar 3× 3 matrices, then A and B have the same rank.

8) T F For any diagonal 2× 2 matrix, we have A2 − tr(A)A+ det(A)I2 = 0.

9) T F There is rotation with an eigenvalue i =
√
−1.

10) T F If a matrix A has the QR decomposition A = QR, then A is similar to R.

11) T F Every matrix is similar to a diagonal matrix.

12) T F The formula det(Indet(A)) = det(A) is always true.

13) T F If A,B are similar, then A+ A is similar to B + A.

14) T F
If the kernel of a matrix A is the same as the kernel of AT , then the matrix
A is diagonalizable.

15) T F
pA2(λ) = pA(λ)

2 for any square matrix A, where pA(λ) is the characteristic
polynomial of A.

16) T F
If a diagonalizable matrix satisfies det(A) = det(A2), then the matrix has
eigenvalues 1, 0 or −1.

17) T F
If {v1, . . . , vn } is an eigenbasis for a n×n matrix A, then det(A) = det(B),
where B has the vi as column vectors.

18) T F
The sum of the complex algebraic multiplicities of a n×n matrix A is equal
to n.

19) T F
The rotation matrix

[

cos(π/6) − sin(π/6)
sin(π/6) cos(π/6)

]

of a rotation by 30 degrees

similar to the rotation matrix of the rotation by −30 degrees.

20) T F
The least square solution x∗ of Ax = b has the property that Ax∗ is the
projection of b onto the image of A.
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Problem 2) (10 points)

a) (4 points) Which of the following matrices have only real eigenvalues:

1)





2 2 2
0 1 1
0 0 2



 2)





2 −1 0
1 2 0
0 0 2





3)





1 1 1
1 1 1
1 1 1



 4)





4 0 0
1 0 1
1 −1 0





b) (6 points) No justifications are necessary. Check the boxes, for which the given matrix has
an eigenvalue 1.

a) The 3× 3 matrix of a projection from space onto a line.

b) The 3× 3 matrix of a rotation around a line.

c) The 2× 2 matrix of a vertical shear in the plane.

d) The 3× 3 matrix of a reflection at a plane in space.

e) The 2× 2 matrix of a rotation in the plane by 90 degrees.

f) The 3× 3 matrix of the identity transformation in space.

g) The matrix ATA, where A is a 3× 2 matrix with orthonormal columns.

h) The matrix AAT , where A is a 3× 2 matrix with orthonormal columns.

Problem 3) (10 points)
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Each of the following 5 statements is either true or false. For every statement, you find 4
arguments, which either confirm or dispute the claim. In each of the 5 statements, there is
exactly one of the 4 explanations which gives the correct reason for the statement to be true
or false. Check the right box. No further explanations are required here.

a) (2pts) Any 2× 2 matrix A which is both orthogonal and symmetric must be I2

True: The only matrix similar to the identity matrix is the identity.
False: The matrix of a reflection is both orthogonal and symmetric.
True: The condition implies A2 = I, which means that A = I
False: An orthogonal projection is both an orthogonal transformation and symmetric.

b) (2pts) A 2× 2 matrix of rank 1 is always diagonalizable.

True: The eigenspace to the eigenvalue 0 must be one dimensional.
False: Such a matrix can have two eigenvalues 1. An example is the shear.
True: There is no matrix of rank 1 for which all the eigenvalues are 0.
False: If B is the horizontal shear, then A = B − I2 is a counter example.

c) (2pts) If all eigenvalues of a n×n matrix A are > 0 then B = A+100In is invertible.

True: The eigenvalues of B are greater than 100.
False: It is possible that B has an eigenvalue 0.
True: The eigenvectors of B are the same as the eigenvectors of A.
False: A horizontal shear A has positive eigenvalues but A+ 100I2 is not invertible.

d) (2pts) The determinant of a rotation in R2 is 1.

True: The matrix of a rotation is an orthogonal matrix.

False: A =

[

0 1
1 0

]

is a counter example .

True: The matrix of a rotation in the plane is

[

a −b
b a

]

, where a2 + b2 = 1.

False: Because the matrix of a rotation has complex eigenvalues in general.

e) (2pts) The horizontal shear

[

1 1
0 1

]

is similar to a reflection at a line.

True: Both the shear and the reflection have rank 2 and are therefore invertible.
False: The determinant of a shear is 1 while the determinant of a reflection is −1.
True: Both the shear and a reflection are diagonalizable with eigenvalues 1 or −1.
False: Any reflection is a symmetric matrix while the shear is an orthogonal matrix.

Problem 4) (10 points)
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Define A =















1 2 3 3 2 1
2 4 6 6 4 2
3 6 9 9 6 3
3 6 9 9 6 3
2 4 6 6 4 2
1 2 3 3 2 1















.

a) (6 points) Find the eigenvalues, eigenvectors and the geometric multiplicities of the eigen-
values of A.

b) (2 points) Is A diagonalizable? If yes, write down the diagonal matrix B such that

B = S−1AS .

c) (2 points) Find the characteristic polynomial fA(λ) of A.

Problem 5) (10 points)

Which paraboloid ax2 + by2 = z best fits the data

x y z

0 1 2
-1 0 4
1 -1 3

In other words, find the least square solution for the
system of equations for the unknowns a, b which aims to
have all data points on the paraboloid.

Problem 6) (10 points)
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a) (4 points) Find all the eigenvalues λ1, λ2 and eigenvectors v1, v2 of the matrix

A =

[

9 1
2 8

]

.

b) (6 points) Find a closed form solution for the discrete dynamical system

x(n+ 1) = 9x(n) + y(n)

y(n+ 1) = 2x(n) + 8y(n)

for which x(0) = 2, y(0) = −1.

Problem 7) (10 points)

a) (3 points) Find the determinant of the matrix












12 2 2 2 2
1 11 1 1 1
1 1 11 1 1
1 1 1 11 1
2 2 2 2 12













b) (3 points) Find the determinant of the matrix















1 2 3 0 0 0
1 0 1 0 0 0
3 2 1 0 0 0
1 4 7 4 1 2
2 5 8 0 4 1
3 6 9 0 0 4















c) (4 points) Find the determinant of















1 2 1 1 1 1
2 3 1 1 1 1
0 0 4 1 1 1
0 0 4 5 2 2
0 0 4 1 6 3
0 0 4 1 1 7















Problem 8) (10 points)
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a) (7 points) Find all (possibly complex) eigenvalues of the matrixA =























0 3 0 0 0 0 0 0
0 0 3 0 0 0 0 0
0 0 0 3 0 0 0 0
0 0 0 0 3 0 0 0
0 0 0 0 0 3 0 0
0 0 0 0 0 0 3 0
0 0 0 0 0 0 0 3
3 0 0 0 0 0 0 0























b) (3 points) Find the QR decomposition of A.

Problem 9) (10 points)

Project the vector









3
3
6
3









onto the linear space spanned by the two vectors

{~v1 =









1
0
0
0









, ~v2 =









2
2
2
2









} .

Problem 10) (10 points)

a) (5 points) Find an eigenbasis of A =





1 2 2
0 2 2
0 0 4



.

b) (5 points) Do Gram-Schmidt orthogonalization on the basis B = {v1, v2, v3 } you just got.
Write down theQR decomposition of the matrix S which contains the basis B as column vectors.
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