FUNCTION SPACES

Math 21b, O. Knill

Homework: Section 4.1: 6-8,9-11,36,48,58,44*,12*-15*

FROM VECTORS TO FUNCTIONS AND MATRICES. Vectors can be displayed in different ways:

```
1  2
3  4
5  6
```

The values (i, e_i) can be interpreted as the graph of a function $f : 1, 2, 3, 4, 5, 6 \to \mathbb{R}$, where $f(i) = e_i$.

Also matrices can be treated as functions, but as a function of two variables. If M is a 8×8 matrix for example, we get a function $f(i, j) = [M]_{ij}$ which assigns to each square of the 8×8 checkerboard a number.

LINEAR SPACES. A space X which contains 0, in which we can add, perform scalar multiplications and where basic laws like commutativity, distributivity and associativity hold, is called a linear space.

BASIC EXAMPLE. If A is a set, the space X of all functions from A to R is a linear space. Here are three important special cases:

EUCLIDEAN SPACE: If $A = \{1, 2, 3, ..., n\}$, then X is R^n itself.

FUNCTION SPACE: If A is the real line, then X is the space of all functions in one variable.

SPACE OF MATRICES: If A is the set

```
(1,1) (1,2) ... (1,m)
(2,1) (2,2) ... (2,m)
  ...
(n,1) (n,2) ... (n,m).
```

Then X is the space of all $n \times m$ matrices.

EXAMPLES

- The n-dimensional space R^n.
- Linear subspaces of R^n like the trivial space $\{0\}$, lines or planes e^\perp.
- M_n, the space of all square $n \times n$ matrices.
- P_n, the space of all polynomials of degree n.
- The space P of all polynomials.
- C^∞, the space of all smooth functions on the line.
- C^0, the space of all continuous functions on the line.
- $C^\infty(R^3, R^3)$ the space of all smooth vector fields in three dimensions.
- C^1, the space of all differentiable functions on the line.
- $C^\infty(R^3)$ the space of all smooth functions in space.
- L^2 the space of all functions for which $\int_\infty^\infty f(x) \, dx < \infty$.

ZERO VECTOR. The function f which is everywhere equal to 0 is called the zero function. It plays the role of the zero vector in R^n. If we add this function to an other function g we get $0 + g = g$.

Careful, the roots of a function have nothing to do with the zero function. You should think of the roots of a function like as zero entries of a vector. For the zero vector, all entries have to be zero. For the zero function, all values $f(x)$ are zero.

CHECK: For subsets X of a function space, of for a subset of matrices R^n, we can check three properties to see whether the space is a linear space:

1) if x, y are in X, then $x + y$ is in X.
2) If x is in X and λ is a real number, then λx is in X.
3) 0 is in X.

WHICH OF THE FOLLOWING ARE LINEAR SPACES?

- The space X of all polynomials of the form $f(x) = ax^2 + bx^3 + cx^4$
- The space X of all continuous functions on the unit interval $[-1, 1]$ which are zero at -1 and 1. It contains for example the function $f(x) = x^2 - |x|$.
- The space X of all smooth periodic functions $f(x) = \sin(x)$.
- The space $X = \sin(x) + C^\infty(R)$ of all smooth functions $f(x) = \sin(x) + g$, where g is a smooth function.
- The space X of all smooth functions on R which satisfy $f(1) = 1$. It contains for example $f(x) = 1 + \sin(x) + x$.
- The space X of all smooth functions on R which satisfy $f(2) = 0$ and $f(10) = 0$.
- The space X of all smooth functions on R which satisfy $\lim_{|x| \to \infty} f(x) = 0$.
- The space X of all continuous functions on R which satisfy $\lim_{|x| \to \infty} f(x) = 1$.
- The space X of all smooth functions on R of compact support: for every f, there exists an interval I such that $f(x) = 0$ outside that interval.
- The space X of all smooth functions on R^2.

If you have taken multivariable calculus you might like the following examples:

- The space X of all vector fields (P, Q) in the plane, for which the curl $Q_x - P_y$ is zero everywhere.
- The space X of all vector fields (P, Q, R) in space, for which the divergence $P_x + Q_y + R_z$ is zero everywhere.
- The space X of all vector fields (P, Q) in the plane for which the line integral $\int_C F \cdot dr$ along the unit circle is zero.
- The space X of all vector fields (P, Q, R) in space for which the flux through the unit sphere is zero.
- The space X of all functions $f(x, y)$ of two variables for which $\int_0^1 \int_0^1 f(x, y) \, dx \, dy = 0$.