Math 229: Introduction to Analytic Number Theory

A zero-free region for {(s)

We first show, as promised, that {(s) does not vanish on ¢ = 1. As usual nowa-
days, we give Mertens’ elegant version of the original arguments of Hadamard
and (independently) de la Vallée Poussin. Recall that
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has a simple pole at s = 1 with residue +1. If ((s) were to vanish at some
1 4 it then —¢’/¢ would have a simple pole with residue —1 (or —2,-3,...)
there. The idea is that ) A(n)/n® converges for o > 1, and as s approaches 1
from the right all the terms contribute towards the positive-residue pole. As
o —1 + it from the right, the corresponding terms have the same magnitude
but are multiplied by n~%, so a pole with residue —1 would force “almost all”
the phases n~% to be near —1. But then near 1 + 2it the phases n~2* would
again approximate (—1)? = +1, yielding a pole of positive residue, which is not
possible because then ¢ would have another pole besides s = 1.

To make precise the idea that if n=% ~ —1 then n~2* ~ 41, we use the identity
2(1 4+ cosf)? = 3 + 4 cos b + cos 26,

from which it follows that the right-hand side is positive. Thus if § = tlogn we
have . ‘
3+ 4Re(n™") + Re(n™2") > 0.

Multiplying by A(n)/n? and summing over n we find
3 [_CC/(J)] +4Re {—CC/(U—i-it)] + Re [—g(o—i-%t)} >0 (1)

forall o >1and ¢t € R. Fix t #0. As 0—1+, the first term in the LHS of this
inequality is 3/(c — 1) + O(1), and the remaining terms are bounded below. If ¢
had a zero of order r > 0 at 1+it, the second term would be —4r/(c—1)+O(1).
Thus the inequality yields 4r < 3. Since r is an integer, this is impossible, and
the proof is complete.

We next use (1), together with the partial-fraction formula
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to show that even the existence of a zero close to 1 + it is not possible. How
close depends on t; specifically, we show:!

1See for instance Chapter 13 of Davenport’s book [Davenport 1967] cited earlier. This
classical bound has been improved; the current record of 1 — o < log=2/37¢|¢|, due to
Korobov and perhaps Vinogradov, has stood for 50 years. See [Walfisz 1963] or [Montgomery
1971, Chapter 11].



Theorem. There is a constant ¢ > 0 such that if |t| > 2 and {(o +it) = 0 then
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Proof: Let o € [1,2] and? [t| > 2 in the partial-fraction formula. Then the
By and I"/T terms are O(loglt|), and each of the terms 1/(s — p), 1/p has

positive real part as noted in connection with von Mangoldt’s theorem on N (T').

Therefore® ,

—Re z(o’ +2it) < O(log [t]),

and if some p =1 — § + it then

—Re C—,(a +it) < O(log |t]) —

¢ o+d6—-1"

Thus (1) yields
4 < 3
c+d6—-1 o-1
In particular, taking? o = 1446 yields 1/208 < O(log|t|). Hence § > (log [t|)~!,
and our claim (2) follows. O

+ O(log |t]).

Once we obtain the functional equation and partial-fraction decomposition for
Dirichlet L-functions L(s, x), the same argument will show that (2) also gives a
zero-free region for L(s, x), though with the implied constant depending on x.

Remarks

The only properties of A(n) that we used in the proof of {(1 + it) # 0 are that
facts that A(n) > 0 for all n and that >~ A(n)/n® has an analytic continuation
with a simple pole at s = 1 and no other poles of real part > 1. Thus the same
argument exactly will show that Hx mod g L(s,x), and thus each of the factors
L(s, x), has no zero on the line o = 1.

The 3 + 4 cos @ + cos 26 trick is worth remembering, since it has been adapted
to other uses. For instance, we shall revisit and generalize it when we develop
the Drinfeld-V1adut upper bounds on points of a curve over a finite field and
the Odlyzko-Stark lower bounds on discriminants of number fields. See also the
following Exercises.

2A lower bound [t| > to would do for any to > 1 — and the only reason we cannot go lower
is that our bounds are in terms of log |¢| so we do not want to allow log |t| = 0.

3Note that we write < O(log |t|), not = O(log |t|), to allow the possibility of an arbitrarily
large negative multiple of |logt|.

41 + a6 will do for any a > 3. This requires that ad < 1, e.g. § < 1/4 for our choice of
a = 4, else o > 2; but we’re concerned only with § near zero, so this does not matter.



Exercises

1. Use the inequality 3 + 4 cosf + cos20 > 0 to give an alternative proof that
L(1,x) # 0 when x is a complex Dirichlet character (a character such that

X # X)-
2. Show that for each o > 2 there exists t € R such that

/ exp(—|z|* +itx) dx < 0.
(Yes, this is related to the present topic; see [EOR 1991, p.633]. The integral is

known to be positive for all ¢ € R when « € (0, 2]; see for instance [EOR 1991,
Lemma 5].)
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