
Math 229: Introduction to Analytic Number Theory

How small can |disc(K)| be for a number field K of degree n = r1 + 2r2?

Let K be a number field of degree n = r1 + 2r2, where as usual r1 and r2 are
respectively the numbers of real embeddings and conjugate complex embeddings
of K. Let OK be the ring of algebraic integers of K, and DK = disc(K/Q) the
discriminant. Minkowski proved that every ideal class of K contains some ideal
J ⊆ OK of norm at most (n!/nn)(4/π)r2 |DK |1/2. (See for instance [Marcus
1977].) In particular, the principal ideal class contains such a J (which might as
well be taken to be OK itself), and since the norm of J is at least 1 we recover
the Minkowski bound

|DK | ≥
(π

4

)2r2 (nn
n!

)2
. (1)

In particular, it readily follows that |DK | > 1 once n > 1 (that is, except
for K = Q); that is, Q has no nontrivial unramified extension. This is a
key ingredient of the Kronecker-Weber theorem, which asserts that any finite
extension of Q with abelian Galois group is contained in a cyclotomic extension
Q(e2πi/n).

Asymptotically as n→∞, Minkowski’s bound is

log |DK | ≥ (2− o(1))n− 2 log(4/π)r2. (2)

That is, we have the lower bound (π/4)2r2/ne2−o(1) on the “root-discriminant”
|DK |1/n. (Note for future reference the numerical values: (π/4)2r2/ne2 is ap-
proximately (7.389)r1/n(5.803)2r2/n.) It is known that the root-discriminant is
invariant under unramified extensions; for instance (1) also implies that some
other number fields — such as the quadratic fields Q(e2πi/3), Q(i), Q(

√
5) whose

discriminants −3,−4, 5 have the smallest absolute values — have no nontriv-
ial unramified extension. Subsequent work extended Minkowski’s “geometry of
numbers” to show log |DK | is bounded below by larger linear combinations of
r1, r2.

In the other direction, Golod and Šafarevič proved that quadratic number
fields K0 whose discriminants have many prime factors have an infinite “class
field tower”, and thus unramified extensions K with [K : K0]→∞. Such K all
have root-discriminant |DK0 |1/2. There is thus an upper limit to improvements
on the constants in (2). One survey of such constructions and the resulting
upper limits is [Schoof 1986].

Much less is known here than for the analogous question on curves C of high
genus with many points over a fixed finite field k. (See the Remarks below.) The
best lower bounds for all but the smallest few n are now obtained by a method
independent of Minkowski’s approach, and similar to the techniques that yield
upper bounds on #C(k). The method, attributed to Stark [1974, 1975] by
Odlyzko [1991], uses the Euler and Hadamard products for the zeta function
ζK to transform the functional equation for ζK into a formula for log |DK | in
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terms of r1, r2, and the nontrivial zeros of ζK . In a series of papers starting
from [Odlyzko 1975], the bounds were progressively improved until reaching
their present form:

Theorem. Let K be a number field of degree n = r1 + 2r2. Then

log |DK | > (log 4π + γ − o(1))n+ r1 (3)

as n→∞, where γ = −Γ′(1) = .577 . . . is Euler’s constant. If moreover ζK
satisfies the Generalized Riemann Hypothesis then

log |DK | > (log 8π + γ − o(1))n+ (π/2)r1 (4)

as n→∞.

Numerically, the root-discriminant of K is asymptotically bounded below by
(60.8)r1/n(22.38)2r2/n, and by (215.3)r1/n(44.7)2r2/n under the GRH. For many
applications one needs also explicit estimates on the o(1) terms for specific values
of (r1, r2). Odlyzko carried out extensive numerical computations to obtain good
lower bounds for many (r1, r2). See [Odlyzko 1991] for a survey of the methods
used and some of the applications, which include the theorem that each of the
nine imaginary quadratic fields of class number 1 has no nontrivial unramified
extensions. (NB the last of these fields has root-discriminant

√
163 < 13.)

We present only a simple proof of the asymptotic estimate under GRH, making
no attempt to optimize the o(1) error. The same approach yields the uncondi-
tional bound (3); see the Exercises.

We begin by obtaining Artin’s formula for |DK |:

Proposition. For all real s > 1 we have

log |DK | = r1

(
log π − Γ′

Γ
(s/2)

)
+ 2r2

(
log 2π − Γ′

Γ
(s)
)

(5)

− 2
s− 1

− 2
s
− 2

ζ ′K
ζK

(s) + 2
∑
ρ

Re
1

s− ρ
,

where ρ runs over the nontrivial zeros of ζK(s) counted with multiplicity.

Proof : Recall that the functional equation for ζK may be written in the form

ξK(s) := Γ(s/2)r1Γ(s)r2 (4−r2π−n|DK |)s/2ζK(s) = ξK(1− s), (6)

and that (s2 − s)ξK(s) is an entire function of s of order 1. Translation by
1/2 yields the entire function (s2− 1

4 )ξK(s+ 1
2 ) symmetric under the involution

s 7→ −s. The logarithmic derivative of the Hadamard product for this function
yields the partial-fraction decomposition

ξ′K(s)
ξK(s)

= B − 1
s

+
1

1− s
+

m

s− 1
2

+
∑
ρ

(
1

s− ρ
+

1
ρ− 1

2

)
. (7)

Here m is the multiplicity of the zero, if any, of ζK(s) at s = 1/2; and ρ runs over
the nontrivial zeros of ζK(s) counted with multiplicity, excluding 1/2. Since (7)
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is an odd function of s − 1/2, the constant B must vanish. We can now take
the logarithmic derivative of (6) and solve for |DK |. Averaging the ρ and 1− ρ
terms, we may replace the summand (s− ρ)−1 + (ρ− 1

2 )−1 by

1
2

( 1
s− ρ

+
1

s− (1− ρ)

)
.

Having thus eliminated (ρ− 1
2 )−1, we recover (5) as follows. For real s, we know

ζ ′K(s)/ζK(s) ∈ R, so we may replace ((s − ρ)−1 + (s − 1 + ρ)−1)/2 by its real
part. Since each ρ has real part in (0, 1), we have Re(1/(s− ρ)) � Im(ρ)−2 as
|ρ|→∞, so

∑
ρ Re(1/(s− ρ)) converges absolutely. We may therefore rearrange

the sum, including the contribution of a possible zero at 1/2, to obtain (5). �

For large n we already improve on the Minkowski bound using (5). Fix s > 1;
then each of the terms Re(1/(s − ρ)) is positive, as is −2ζ ′K(s)/ζK(s) by the
Euler product, while the negative terms −2/(s− 1)− 2/s are constants. Hence

log |DK | > r1

(
log π − Γ′

Γ
(s/2)

)
+ 2r2

(
log 2π − Γ′

Γ
(s)
)
−O(1). (8)

Now take s arbitrarily close to 1; then −(Γ′/Γ)(s/2) and −(Γ′/Γ)(s) approach
−(Γ′/Γ)(1/2) and −(Γ′/Γ)(1), which equal γ + log 4 and γ respectively, and we
deduce

log |DK | > (log 2π + γ − o(1))n+ (log 2)r1 (9)

which yields an asymptotic lower bound (22.38)r1/n(11.19)2r2/n on the root-
discriminant.

The Proof of (4) improves on this further. Start by using the Euler product to
show that not only −ζ ′K/ζK but also all its derivatives of even order with respect
to s are positive for s > 1, while the derivatives of odd order are negative. Thus
by differentiating (5) m times (m = 0, 1, 2, . . .) we find

δm log |DK | > (−1)m
[
r1
dm

dsm

(
log π − Γ′

Γ
(s/2)

)
+ 2r2

dm

dsm

(
log 2π − Γ′

Γ
(s)
)]

+m!
(

2
∑
ρ

Re
1

(s− ρ)m+1
− 2

(s− 1)m1
− 2
sm+1

)
. (10)

(Here δm is a form of Kronecker’s delta, which equals 1 for m = 0 and zero
otherwise.)

Our idea is now that for fixed s > 1 and large n the term in (s − 1)−(m+1) is
negligible, and so by dividing the rest of (10) by 2mm! and summing over m
we obtain (5) with s replaced by s − 1/2 (Taylor expansion about s). Since
Re(1/(s − 1

2 − ρ)) is still positive, we then find by bringing s arbitrarily close
to 1 that

log |DK | > r1(log π − Γ′

Γ
(1/4)) + 2r2(log 2π − Γ′

Γ
(1/2))− o(n),

and thus obtain our Theorem from the known special values

Γ′

Γ
(1/2) = − log 4− γ,

Γ′

Γ
(1/4) = − log 8− π/2− γ. (11)
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To make this rigorous, we argue as follows. For any small ε > 0, take s0 = 1+ ε,
and pick an integer M so large that

(i) the values at s = s0− 1/2 of the M -th partial sums of the Taylor
expansions of (Γ′/Γ)(s) and (Γ′/Γ)(s/2) about s = s0 are within ε
of (Γ′/Γ)(s0 − 1

2 ) and (Γ′/Γ)(s0/2− 1
4 ) respectively;

(ii) the value at s = s0 − 1/2 of the M -th partial sum of the Taylor
expansion of Re(1/(s− 1

2−ρ)) about s = s0 is positive for all complex
numbers ρ of real part 1/2.

Condition (i) holds for large enough M because (Γ′/Γ)(s) and (Γ′/Γ)(s/2) are
both analytic functions of s in a circle of radius 1 > 1/2 about s0. To verify that
(ii) also holds as M→∞, let1 ρ = 1/2 + it, and note that Re(1/(s− 1

2 − ρ)) =
Re(1/(s− it)) = ε/(ε2 + Im(ρ)2), and the value of the M -th partial sum of the
Taylor expansion differs from this by

Re
1

[1 + 2(ε− it)]M (ε+ it)
� (1 + ε2 + t2)−M/2.

The positive ε/(ε2 + t2) clearly dominates the error (1 + ε2 + t2)−M/2 uniformly
in t once M is sufficiently large.

Now divide (10) by 2mm!, sum from m = 0 to M − 1, and set s = s0 to obtain

log |DK | > r1

(
log π−Γ′

Γ
(s0/2−1/4)−ε

)
+2r2

(
log 2π−Γ′

Γ
(s0−1/2)−ε

)
+O(1);

since ε was arbitrarily small and s0 arbitrarily close to 1, we are done. ��

Remarks

Besides the problem of evaluating limits such as lim infn→∞ log |DK |/n, many
other natural questions remain wide open in this context where analogous ques-
tions for high-genus curves with many rational points over a finite field have
been settled for some time. We list several of these open questions:

• It is not known how to construct class field towers explicitly. Can one
construct an explicit infinite sequence of number fields K with bounded
root-discriminant?

• When a class field tower over K0 can be proved infinite, the resulting
unramified extensions K have [K : K0] limited to a very sparse set of
positive integers, namely those whose prime factors are contained in a
given finite set S. Does there exist θ > 0 an infinite sequence of number
fields K with bounded root-discriminant whose degrees cover at least xθ

of the integers n < x as x→∞?

• More ambitiously: Can there be such a sequence that covers every n?
Equivalently, is lim supn→∞ log |DK |/n finite?

1The customary ρ = 1/2 + iγ may lead to confusion in the presence of Euler’s constant γ.
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• In another direction: in a class field tower over a fixed number field, the
ratios r1/n are limited to a small subset of [0, 1] ∩Q. Does there exist a
finite R such that the number fields K with |DK | < Rn have ratios r1/n
that form a dense subset of [0, 1], or even of an interval of positive length
in [0, 1]?

• The ratio r1/n can be regarded as a measure of the behavior of the
“archimedean place” of Q in K. Similar questions can be posed con-
cerning the splitting or ramification of a given set of “nonarchimedean
places” (rational primes) in K. See also Exercise 4.

Another notable application of the method of Odlyzko et al. is Mestre’s lower
bound on the conductor of an elliptic curve E/Q of given rank, assuming GRH as
well as the conjecture of Birch and Swinnerton-Dyer for the L-function L(E, s)
of the curve. Similar bounds have been obtained for even more complicated
L-functions.

Exercises

1. Fill in the missing steps in our proof of (4) by checking the derivation of
the formula (5) or log |DK | and proving the formulas (11) for the logarithmic
derivative of Γ(s) at s = 1/2 and s = 1/4.

2. Show that the Odlyzko bound (4) still holds under the weakened hypothesis
that all zeros of ζK(s) are either real or on the critical line σ = 1/2. (This
hypothesis allows also for nontrivial zeros on (0, 1).) Can you find a yet weaker
hypothesis on the zeros under which (4) remains true?

3. Use the same methods to prove the unconditional lower bound (3).

4. Suppose that the rational prime 2 splits completely in K (whence the Eu-
ler product for ζK(s) contains the factor (1 − 2−s)−n). Obtain lower bounds
on |DK |, both unconditionally and under GRH, that improve on (3,4). Gener-
alize.
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