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Problem 1: Invertible Phases of Matter

Fix discrete parameters for quantum system: dimension, symmetry type
(Quantum system: QFT, stat mech system, string theory . . . )

M moduli space

∆ ⊂M locus of phase transitions

Path components π0(M \∆) are deformation classes = phases

Warning: Often the quantum system, much less M, has no rigorous
mathematical definition/construction
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Problem 1: Invertible Phases of Matter

Analog in Geometry: M moduli space of 1d Riemannian manifolds M

Two paths connecting 1 circle to 2 circles:

The first disallowed because manifolds; ∆ = noncompact manifolds

Then π0(M \∆)
∼=−−→ Z≥0; the map counts the components of M
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Problem 1: Invertible Phases of Matter

d dimension of space

I global symmetry group

Invertible (“short range entangled”) gapped lattice systems:

Invertible: Unique ground state on each compact spatial manifold Y d

Open Problem: Define moduli space M′(d, I) and compute π0
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Problem 1: Invertible Phases of Matter

Two physical principles to move to QFT:

• Deformation class of qtm system controlled by low energy physics
• LEP of gapped system well-approximated by topological ∗ field theory

Topological ∗: Energy-momentum tensor is a c-number

We imagine a homotopy equivalence

M′(d, I)
low energy approximation //M(n,H)

to a moduli space M(n,H) of invertible field theories

n dimension of spacetime

ρn : Hn −→ On symmetry type (to be explained)

Problem we solve: Define M(n,H) and compute π0
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Problem 2: Parity Invariance of M-Theory

We investigate in low energy field theory approx: 11d supergravity +
quantum correction. Parity invariance = time-reversal symmetry

Problem (Witten): Can we consistently formulate M-theory on
unorientable manifolds? (Yes: M2-brane)

Two anomalies: (i) Rarita-Schwinger field
(ii) cubic term in C field

Anomaly α = αRS ⊗ αC is an invertible 12-dimensional field theory. In

this case both theories are topological. Problem: Trivialize αRS ⊗ αC

Determine homotopy type of M(n,H) (w/Mike Hopkins) and
compute π0 in relevant cases to address Problems 1 and 2

Remark: Problems in string theory are more fun than those in
condensed matter theory: higher dimensions!
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Problem 3: WZW Factor in Theory of Pions

4d QCD is a gauge theory with fermionic fields and internal symmetry
group K = G×G where G = SUNf

Low energy theory is a σ-model into (G×G)/G ∼= G (theory of pions)

Wess-Zumino: ’t Hooft anomaly matching (over R—local anomaly) for
background G×G gauge field to deduce WZ term in low energy theory

Witten: studed on S4 to normalize coefficient: WZW class in H5(G;Z)

Outstanding Questions:

• QCD requires spin structure; pion theory does not?

• QCD has fermionic states; not manifest in pion theory?

• Anomaly matching over Z—global anomaly matching?

Solution introduces a refined WZW factor in exponentiated action
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Axiom System for QFT

How do we approach definitions/axiom systems in Mathematics?

Definition/Theorem: There exists a unique complete ordered field

Two constructions of R: Dedekind cuts, Cauchy sequences (in Q)
The characterization is more useful than the constructions

Other examples: the definitions of a smooth manifold in differential
geometry or variety and scheme in algebraic geometry

Can often develop theories separately from construction of examples.
But examples are important: they are what Mathematics is about!

Need for foundations (definitions and axioms) arose from concrete
problems and crises
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Relativistic Quantum Field Theory

Symmetry −→ background fields. No fluctuating fields. No lagrangians.
No quantization. Axiomatize quantum structure.

Starting point: relativistic QFT on Minkowski spacetime Mn

Hn
ρn−−→ I↑1,n−1 unbroken global relativistic symmetry group

H1,n−1 Hn/translations

K := ker(ρn) internal symmetry group (compact)

1 −→ K −→ H1,n−1
ρn−−−→ O↑1,n−1

Relativistic invariance + spin-statistics: Image(ρn) = SO↑1,n−1 or O↑1,n−1

Remark: The internal symmetry group K can also include
supersymmetries and higher symmetries
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Wick Rotation

Positive energy =⇒ correlation functions are boundary values of
holomorphic fns on a complex domain D. Restrict to Euclidean space En

1 // K //� _

��

H1,n−1
ρn //

� _

��

O↑1,n−1� _

��
1 // K(C) // Hn(C)

ρn // On(C)

1 // K //?�

OO

Hn
ρn //?�

OO

On
?�

OO

Relativistic invariance: Image(ρn) = SOn or On

Definition: The symmetry type is the pair (Hn, ρn)

Schematic notation for Wick rotation: Mn ∼∼∼BD ∼∼∼B En
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• Wick rotation of unitarity is reflection positivity

• Osterwalder-Schrader reconstruction theorem: En ∼∼∼BD ∼∼∼BMn

• Compactness of Euclidean symmetry group Hn leads to structure
theorems about 1 −→ K −→ Hn

ρn−−−→ On (arXiv:1604.06527, §2)

• There is a splitting hn ∼= on ⊕ k (recall Coleman-Mandula)

• (n ≥ 3) There exists central element k0 ∈ K with (k0)2 = 1 and a
canonical homomorphism Spinn → Hn mapping −1 to k0

• There exists a canonical stabilization

Hn
� � in //

ρn

��

Hn+1
� � in+1 //

ρn+1

��

Hn+2
� � //

ρn+2

��

. . .

On
� � // On+1

� � // On+2
� � // . . .
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• Wick rotation of unitarity is reflection positivity

• Osterwalder-Schrader reconstruction theorem: En ∼∼∼BD ∼∼∼BMn

• Compactness of Euclidean symmetry group Hn leads to structure
theorems about 1 −→ K −→ Hn

ρn−−−→ On (arXiv:1604.06527, §2)

states/symmetry Hn K k0

bosons only SOn {1} 1
bosons, time-reversal (T ) On {1} 1

fermions allowed Spinn {±1} −1
fermions, T 2 = (−1)F Pin+

n {±1} −1
fermions, T 2 = id Pin−n {±1} −1



En ∼∼∼B Compact Manifolds

Including translations the Euclidean symmetry group is an extension

1 −→ Rn −→ Hn −→ Hn −→ 1

Now pass from global to local symmetries, as in differential geometry:
couple to background gravity and background gauge field

Step 1 (Rn): Pass from flat affine space to a curved manifold Xn

1 −→ K −→ Hn
ρn−−−→ On

Step 2 (On): Riemannian metric on X

Step 3 (Hn): Introduce differential Hn-structure on X (E. Cartan)

Nontrivial step: Restrict to compact manifolds. Not at all obvious that
we retain IR physics, but will see so in examples
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The Axiom System

These axioms were introduced by

Graeme Segal (mid 1980’s): 2d conformal field theory
Michael Atiyah (late 1980’s): topological field theory

With modifications they should apply to scale-dependent theories

Axioms capture properties of state spaces and correlation functions

Discrete parameters: spacetime dimension n
symmetry type (H, ρ)
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Graeme Segal (mid 1980’s): 2d conformal field theory
Michael Atiyah (late 1980’s): topological field theory

With modifications they should apply to scale-dependent theories

Axioms capture properties of state spaces and correlation functions

Discrete data: spacetime dimension n
symmetry type (H, ρ)



Definition: An n-dimensional field theory is a homomorphism

F : Bordhn�1,ni(Hn) �! VecttopC

N.B.: The most far-reaching assertion is that the field theory can
be encoded by compact Riemannian manifolds
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Reconstruction Question: Reverse Mn ∼∼∼BD ∼∼∼B En ∼∼∼B cpt Xn ?
In essence, we assume that the answer is “yes” and work with field
theories using this Axiom System.



Locality and Unitarity

The state space F (Y n−1) depends locally on Y

Expected if F is the effective theory of a lattice model

Extended field theory: invariants for manifolds of dimension ≤ n
brings in higher categorical ideas

Powerful classification theorem for topological theories (Lurie)

Wick-rotated unitarity: reflection positivity

Since locality and unitarity are the pillars of QFT, we ask:

Open Question: What is extended reflection positivity?

We propose a solution for invertible topological theories
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Invertibility and Homotopy Theory

Field theories have a composition law F ⊗ F ′ and a trivial theory 1

Definition: A field theory F is invertible if there exists F ′ such that
F ⊗ F ′ is isomorphic to 1

F invertible =⇒ dimF (Y ) = 1 for all closed Y n−1 (∂Y = ∅)

Invertible theories are maps in stable homotopy theory:

Bordn(Hn)
F //

���� &&

C

Bordn(Hn)
F̃ // C×

?�

OO

(Grothendieck) F̃ “is” an ∞-loop map of ∞-loop spaces (spectra)
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Main Theorem

Mtop(n,Hn) := moduli space of reflection positive invertible
n-dimensional extended topological field theories
with symmetry group Hn

Theorem (F.-Hopkins): There is a 1:1 correspondence

π0Mtop(n,Hn) ∼= [MTH,Σn+1IZ]tor

Conjecture (F.-Hopkins): There is a 1:1 correspondence

π0M(n,Hn) ∼= [MTH,Σn+1IZ]

Theorem and Conjecture determine entire homotopy type, not just π0
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Class AII (Pinc̃+):

n kerΦ −→ FFn(Pin
c̃+)

Φ−−→ TPn(Pin
c̃+) −→ cokerΦ

4 0 Z/2Z (Z/2Z)3 (Z/2Z)2

3 0 Z/2Z Z/2Z 0

2 0 0 0 0

1 0 Z Z 0

0 0 0 Z/2Z Z/2Z

• Topological insulator with time-reversal T 2 = (−1)F

• The free fermion Z/2Z are the Kane-Mele-Fu invariants

• Metlitski asked about TP
4

(Pinc̃+) vs. bordism computation

• The results in 3 dimensions are also known via non-bordism means
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Class CI (G+ = Pin+⇥{±1}SU2

):

n ker� �! FFn(G+)
���! TPn(G+) �! coker�

4 4Z Z Z/4Z⇥ Z/2Z Z/2Z
3 0 0 0 0

2 0 0 Z/2Z Z/2Z
1 0 0 0 0

0 2Z Z Z/2Z 0

• Computations confirm a conjecture of Wang-Senthil

• Unsure if TP
2,3(G+) are in the CM literature
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• Computations confirm a conjecture of Wang-Senthil

• Unsure if TP
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