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Index theory on pin manifolds has been studied sporadically, for example in works by
Gilkey, Stolz, and Zhang, but not as far as I know in a systematic way

Mike Hopkins and I encountered index theory on pin manifolds in two recent projects, and
this talk is based in part on our joint works arXiv:1604.06527 and arXiv:1908.09916

So I thought I would take this opportunity to indicate some systematics and to use pin
manifolds as an excuse to expose general points of topological and geometric index theory

Let’s begin with the question: Why pin manifolds?
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Symmetry ~~ structure on a smooth manifold M, encoded in a lift of the frame bundle:

(Be) B(M) i A(P) (O is a G,-connection)
lGn \ /
GL,R GL,R
M M

Reflection symmetry ~~ unoriented manifolds
Relativistic quantum theory with time-reversal symmetry ~~> unoriented manifolds

Relativistic quantum theory with time-reversal symmetry and spinors ~~+ pin manifolds
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Pin groups and Clifford algebras

e 0 o poo = (2 = Db — oo = e —
Cliffpq : 61 == = €; = e e i
Spin, , © Pin, ; — Cliff, ,

BiiReNRing P =R Cliff ., = Cliff,, o

Spin,, = Spin, ,, = Spin,, o

In low dimensions there are special isomorphisms:

Cliff_,, = Cliffy,

n Spin,, Pinl" Pin,;
My By X [Py My
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g— gQ®e, g€ Pin:f\Spinn



Key observation: There exist embeddings

Note the Morita equivalence

Cliff,,1 = CUff , (_1) @ Cliffy,1 =

and so the opposite shifts



A 10-fold way

Theorem: There are embeddings H,(s) — Cliff;,, ®D(s) compatible with Clifford

multiplication
s J&l© K Cartan D
(0] Spin® T A C
i P T AIII CLff€,

s H K Cartan /D)

0 Spin I, D R
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The Clifford linear Dirac operator

M Riemannian spin manifold
oM)— M bundle of orthonormal frames
Gise 58 oG tautological horizontal vector fields
Spin(M) — O(M) — M lift to principal Spin,,-bundle
Spin,, c Cliff ,,, C Cliff 1, © left regular Cliff | ,,-module
J
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Modification for a Pin manifold:

Pin* (M) — O(M) — M principal Pin?-bundle
Pin! c Cliff,4 ¢ ClLi e left regular Cliff,, ;-module
, 7 7 .
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From now on we restrict to Pin™; everything works for Pin~ with the opposite shift
The (Z/2Z-graded) opposite algebra to Cliff, , is Cliff, ,, and so

Pint c Cliffy 14¢@ GLEMRS
is equivalent to commuting left actions

Pin:{ < Cliﬁ.ml @

& Cliffy
Therefore, the Dirac operators
n 1 0 n 0 n 1
E™ - D=’771+"'+’}/7 @ (QpE —>Chffn.1)
T ox™ ;
M - D) = ,71 01 4 - e C (1/) Pin+<M) — Cliff,m)
Morita

have a commuting left A= action



Atiyah-Singer index theorem for Dirac operators

X — 5 proper fiber bundle of relative dimension n
relative spin structure
Riemannian structure on 7 (relative metric + horizontal distribution)

F— X orthogonal vector bundle with compatible V



Atiyah-Singer index theorem for Dirac operators
X — 5 proper fiber bundle of relative dimension n
relative spin structure

Riemannian structure on 7 (relative metric + horizontal distribution)

F— X orthogonal vector bundle with compatible V

From this construct a family of Dirac operators C Dxys

2
C L@h CA Ns ok 3345

45(



Atiyah-Singer index theorem for Dirac operators

X — 5 proper fiber bundle of relative dimension n
relative spin structure
Riemannian structure on 7 (relative metric + horizontal distribution)

F— X orthogonal vector bundle with compatible V

From this construct a family of Dirac operators C Dxys

The Fredholm (analytic) index ind Dx/g € KO~"(S)



Atiyah-Singer index theorem for Dirac operators

X — 5 proper fiber bundle of relative dimension n
relative spin structure
Riemannian structure on 7 (relative metric + horizontal distribution)

F— X orthogonal vector bundle with compatible V

From this construct a family of Dirac operators C Dxys
The Fredholm (analytic) index ind Dx/g € KO~"(S)

Thom class (Atiyah-Bott-Shapiro) defines pushforward m: KO%X) — KO~"(S)



Atiyah-Singer index theorem for Dirac operators

X — 5 proper fiber bundle of relative dimension n
relative spin structure
Riemannian structure on 7 (relative metric + horizontal distribution)
F— X orthogonal vector bundle with compatible V
From this construct a family of Dirac operators C Dxys
The Fredholm (analytic) index ind Dx/g € KO~"(S)

Thom class (Atiyah-Bott-Shapiro) defines pushforward m: KO%X) — KO~"(S)

Theorem: ind Dx /g = m([E])



Modification for

X —Fk proper fiber bundle of relative dimension n
relative structure
Riemannian structure on 7 (relative metric 4+ horizontal distribution)

FE— X orthogonal vector bundle with compatible V

From this construct a family of Dirac operators MNgte C Dxs
The Fredholm (analytic) index ind Dx/g€ KO )
Thom class (Atiyah-Bott-Shapiro) defines pushforward m: KO%(X) — KO (S)

Theorem: ind Dy g = m([E])



The topological index is a pint bordism invariant, but not always effective



The topological index is a pint bordism invariant, but not always effective

Example: For n = 2 the index on a single closed pin® manifold 7" : M — pt lands
in KO=1(pt) =44 24

The index is an isomorphism Qg“ﬁ M, o)

A generator of Qg“ﬁ is the Klein bottle (with a nonbounding pin* structure)



The topological index is a pint bordism invariant, but not always effective

Example:

Example:

For n = 2 the index on a single closed pin® manifold 7" : M — pt lands
in KO=1(pt) =44 24

The index is an isomorphism Qg“ﬁ M, o)

A generator of Qg“ﬁ is the Klein bottle (with a nonbounding pin* structure)

For n = 4 we have QF'™" ~ 7/167 with generator RP* (with either pin*
structure), but KO~3(pt) = 0 so the index carries no information



The topological index is a pint bordism invariant, but not always effective

Example: For n = 2 the index on a single closed pin® manifold 7" : M — pt lands
in KO=1(pt) =44 24

The index is an isomorphism Qg“ﬁ M, o)

A generator of Qg“ﬁ is the Klein bottle (with a nonbounding pin* structure)

Example: For n = 4 we have Q™" ~ 7Z/16Z with generator RP* (with either pin™
structure), but KO~3(pt) = 0 so the index carries no information

To extract more information we turn to differential K-theory and secondary invariants
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Generalized differential cohomology

Precursors: Deligne cohomology (1971) and Cheeger-Simons differential characters (1973)

Differential K-theory and K O-theory arose (1999) in string theory from two sources:
(i) Green-Schwarz anomaly cancellation and (ii) D-branes in string theory

This stimulated developments in generalized differential cohomology by Hopkins-Singer,
Bunke-Nikolaus-V6lkl and many others

There are geometric models of differential K-theory (Bunke-Schick, Simons-Sullivan, ... )
and an index theorem in differential K-theory (F-Lott)

Recent work on differential KO-theory by Grady-Sati, Gomi-Yamashita

This only scratches the surface; see the recent survey by Debray and Amabel-Debray-Haine
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Let M be a smooth manifold

HY(M;Z) = {smooth maps M — R/Z} / homotopy

H'(M) = {smooth maps M —> R/Z}
H*(M;Z) = {principal R/Z-bundles P — M } / isomorphism

H?(M) ~ {principal R/Z-connections (P,©) — M} / isomorphism

I\T/[q(M) curvature Q%(M)

™0 i ldc Rham

HY(M;7) HY(M;R)

This is a commutative square of abelian groups, but not a pullback square: try ¢ = 1 and
M = pt
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ﬁq(M) curvature Q%(M)

o) j lde Rham

HY(M;Z) HY(M;R)

One constructs H (M) by a homotopy pullback

H4(M) can be given the structure of an abelian Lie group (Becker-Schenkel-Szabo)
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H(M) M)Q%(M)

0 i lde Rham

HY(M;7) HY(M;R)

One constructs H (M) by a homotopy pullback

H4(M) can be given the structure of an abelian Lie group (Becker-Schenkel-Szabo)

mo: HI(M) — HY(M;Z) underlying topological class
v: HIY(M;R/Z) —> HI(M) flat subgroup
e differential cohomology combines local information (differential forms) with integrality

e calculus of differential cocycles lifts calculus of differential forms
® interplay of my and ¢ gives topological information beyond cohomology
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Differential KO-theory

]?6(1(]\/[) curvature Q(M; R[U, U_l])q

closed, integral

o de Rham (deg =4)

KOI(M)

H(M;]R[v,v_l])q

v: KO™Y(M;R/Z) —> F{?f’(M) flat subgroup (zero curvature)

Geometric model: (E,V,n) with E — M orthogonal vector bundle with covariant
derivative V and 7 a Chern-Simons type differential form

Simons-Sullivan prove (for K) that each differential K-class has an 7 = 0 representative

mo: KO(pt) — K%(pt) = Z
v: R/Z = K'(pt; R/Z) — K (pt)
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Differential K-theory and n-invariants

Theorem (Klonoff): Let M be a closed n-dimensional spin® manifold, and suppose
FE — M is a unitary vector bundle with covariant derivative. Then the pushforward

M KO(M) — K~"(pt) is

e ind D, (F), n even
7 ([E]) =
€y (E) (mod 1), n odd
: , - V/
= w is the Atiyah-Patodi-Singer n-invariant and K "(pt) = { L
R/Z, n odd

® Other invariants of geometric index theory—Pfaffian and determinant line bundles,
index gerbes, Bismut superconnection, ...—are unified in differential K (O)-theory

® We use the extension of Theorem to 1?6, though I don’t know if proofs exist in print

® A thorough development of geometric index theory using K- and I?a—theory is needed



Differential KO-theory and n-invariants on spin manifolds
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Differential KO-theory and n-invariants on spin manifolds
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-

R/Z, n=7 (mod 8)
0, n=6 (mod 8)
0, n=5 (mod 8)
I\(f)_n(pt) 4 Z, n=4 (mod 8)
R/Z, n=3 (mod 8)
Z/2Z, n=2 (mod 8)
Z/2Z, n=1 (mod 8)
Z, n=0 (mod 8)

\

=0 S
For M spin the pushforward 7% : KO (M) — KO n(pt) gives:
* usual primary topological index invariants of Atiyah-Singer if n =0,1,2,4 (mod 8)
¢ usual 7-invariant for spin manifolds if n = 3,7 (mod 8)



Differential KO-theory and n-invariants on spin manifolds

-

R{Z, nO7 pmod8&q

0, nO6 pmod &
0, nO5 pmod &
Zs nO4 pmod 8y

—~—«n
KO tqb .
S R{Z, nO3 pmod &y

Z{2Z, n0O2 pmod &
Z{2Z, nO1 pmod &
& nO0 pmod 8

For M spin the pushforward .V!M : Iz(/)oqu : IZ(/)«nrptq gives:
a usual primary topological index invariants of Atiyah-Singer if n © 0,1, 2,4 pmod 8q
a usual " -invariant for spin manifolds if n O 3,7 pmod 8

For n O 3 pmod 8qthe correct invariant is #{2 pmod 1q
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If M is a closedn-dimensional pin manifold, then g : ko’mqt ko™ Mptq

Theorem/Conjecture: Let M be a closedn-dimensional pin manifold, and suppose
E ., M is an orthogonal vector bundle with covariant derivative. Then
#
R [V Ear L 2 odlg nO4 od
M r@s O v PEa{2 pmod 1q pmod 8q

"wPEd pnod1g nOO0 pmod &

e
Furthermore, q!M rids is rational (lies in Q{Z), is independent of metrics and covariant
derivatives, depends only onfEs PKO °oM g and is a pin  bordism invariant.

Key point: the shift by one implies the characteristic dilerential form that computes the
variation has odd degree, so it vanishes
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bundle, r odd. The usual Euler class is#; w,.1pEqQ P H'pM ;Zg The
Euler class in di"erential cohomology isw; . 1pE g interpreted as an element
of order 2 in H"“!pV ; R{Zq the Rat subgroup of 4" pVl g There is a similar
statement for the Euler class inK -theory and KO -theory.



Example: (n=4) The pushforward M !, gM plqinduces an isomorphism

s 9 . L
! Pin n Z Z
G

M, "y {2 pmod I

This is an example of di"erential cohomology theory encoding topological information
beyond the Z and R{Z topological theories

Remark:  Another example of this phenomenon: LetE 5, M be a rankr real vector
bundle, r odd. The usual Euler class is#; w,.1pEqQ P H'pM ;Zg The
Euler class in di"erential cohomology isw; . 1pE g interpreted as an element
of order 2 in H"“!pV ; R{Zq the Rat subgroup of 4" pVl g There is a similar
statement for the Euler class inK -theory and KO -theory.

Problem: Produce topological formulas for",, pEgand ", pEq{2



M-Theory from 11d supergravity

Fields in M-theory (F): pin‘ structure
g Riemannian metric
Rarita-Schwinger peld

& local 3-form, Peld strength is global closed 4-form

SUPERGRAVITY THEORY IN 11 DIMENSIONS The Lagrangidn @find is the follewing :

E. CREMMER, B. JULIA and J. SCHERK

Jaboratoire de Physique Théorique de l'Ecole Normale Supérieure”

paris, France

{‘\‘(1 A3y, Bafafis e ve F F
o

Abstract : 3%y g B s

supergravity in 11 dimensions which is exp

related to the O(8) theory in 4 dimensions after dimensions

reduction.
LPTENS 78/10
tlarch 1978
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a Wick rotation: time-reversal symmetryif the theory is debPned onunoriented
manifolds. The Rarita-Schwinger Peld! is a form of spinor Peld; in this case we need
a pin structure

a There is an(additional term) from string theory: in total an inhomogeneous cubic form

e R C3 « p—|C
P O 75

which is skew-symmetric: " p«cg O «" peqg

The Lagrangian we find is the following :

\ N ve s VT
= -2 3 Rw) ‘L'ZY Y r- Dv(w—;_"‘&) q)f "4\%3 twger

P (T, P 2 ) (Raas + Punrs)

A%2
f oA, %2 H3 ¥, (BafBafs ﬁv.‘l-\@ - -

g—Kl & 3%y rf"n/’i(‘sﬁw Auve
ki)
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a Wick rotation: time-reversal symmetryif the theory is debPned onunoriented
manifolds. The Rarita-Schwinger Peld! is a form of spinor Peld; in this case we need
a pin structure

a There is an additional term from string theory: in total an inhomogeneous cubic form

8 C‘?> « p =0
a3 O
cq 18

which is skew-symmetric: " p«cg O «" peqg

a Dirac quantization (\Witten ): C-peld gives aw;-twisted integral lift of wy

Debnition: Let M be a pin manifold. An mc structure on M is a w-twisted integer
lift of wapM g Compare: spirf structure = integer lift of wopM q
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The Rarita-Schwinger anomaly

There are two contributions to the anomaly in M-theory: (1) a quantum anomaly from
integrating out the Rarita-Schwinger beld! , and (2) an anomaly from the cubic form"

Mike Hopkins and | gave a computational proof that the total anomaly vanishes

This came down to computing the bordism group of 12-dimensionaim. manifolds and
computing two quantities, one of which is#y pT M « 2q{2

This motivated us to bnd topological formulas for this invariant



Generators of the m; bordism group

Theorem: The following six mg-manifolds generate the group! 1;Mmg b Z:

PNg, CoG  PWE, 00 PW1,"q
K 6 HP%,"q pRP%c,q0B, pRP*#RP*0q0B.

K
HP?

B

HP?# HP21, Wil RP?

RP2L, WZOPKO?ORql' s*
HP2!I W;! CP'6 CP?

K 3 surface

quaternionic projective plane

Bott manifold

S* 6 pHP?# HP?2qL % Wi

KR, S* generating H-line bundle

Bso Opl,1c OR, CP'6 cpt”
SO; B PSp, »<HP?



Adams spectral sequence

E>' O Exty'pH*Mm, 2{2Zq - ! «sMmcb Z;

q ¢ Bott manifold

K3-surface

Klein bottle

° I
WAWe a*P(v) Or(l,“ + 12wy

0 2 4 6 8 10 12

o L
point « w?
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Topological computations of !, pEqf2

We state for pin  12-manifolds; analogs exist in dims 4pmod 8qand for pin© manifolds

M closed pin 12-manifold
E! M real vector bundle
'vPEQ{2 pmod 1q PQ{Z "-invariant of interest

Method 1: If M is spin, then!,, pEq{2 O % ind Dy pEq pnod 1q

Method 2 ( Stolz): #: M |, M orientation double cover with free orientation-reversing
involution $: M , M. SupposeM O BZ, Z compact pin , and
#UE |, M extends overZ, as does$. If the extension has a Pnite
set tf u of Pxed points then (based onAPS, Donnelly)

D %&

8 !
f2

I PEaf20 % Oul, & O trace of involution on Pber



Generators of the m; bordism group

Theorem: The following six mg-manifolds generate the group! 1;Mmg b Z:

PNg, CoG  PWE, 00 PW1,"q
K 6 HP%,"q pRP%c,q0B, pRP*#RP*0q0B.

K
HP?

B

HP?# HP21, Wil RP?

RP2L, WZOPKO?ORql' s*
HP2!I W;! CP'6 CP?

K 3 surface

quaternionic projective plane

Bott manifold

S* 6 pHP?# HP?2qL % Wi

KR, S* generating H-line bundle

Bso Opl,1c OR, CP'6 cpt”
SO; B PSp, »<HP?
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Zhang proved a variant of the following with analytic techniques based onBismutBZhang

H! RP?® Hopf bundle
(0]
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Method 3 ( Zhang)

Zhang proved a variant of the following with analytic techniques based onBismutBZhang

H! RP?® Hopf bundle
(0]
KO pRP?°qbPZz{2!'z  generatorisl«rHs

Theorem: Suppose! : M I, RP?° such that ! “w;pRP?°q Ow;pM g Then
IR O Al : u
|| IEs 0211%IlEq l«rHs  in KOpRP?q
We applied this to compute ", pEq{2 for the manifold W¢:

RPEL  WZ O PK Q20O Rg) Heiied Kr, S*generatingH-line bundle

Problem: Give a topological proof of Theorem
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Possible approach

IRP20

\ e if > M{M\

n RP20
M P 20

g™, pRP*: KO I, KO ptgfactor through KO |, KO in the domain

Reformulation: MOy g KO%pMq!l, KO X 11pptq PR{Z



Possible approach

IRPZO

Y Aoy
\ RP20 R A 7 g

M m@zo

g™, pRP*: KO I, KO ptgfactor through KO |, KO in the domain

Reformulation: g™ qRPZO y":KO°mMq!l, KO 1lpptq PR{Z

This formulation illustrates the interplay of dilerential and topological aspects of
dilerential cohomology, and should be an instance of a more general principle



)
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Method 4 ( FBMelrose )

Warmup Question:  Given a spaceY andy PH™pY; Zg how do we measurey?

-periods xF 9y, rW sy PZ of closedprobesF : W , Y determiney PH™pY; Zqf

A E
-periods F'y,rWs P of compact Z{kZ-manifold probesF : W , Y

Theorem ( Morgan BSullivan ): The collection of all Z-periods and -periods
determiney PH™pY ; Zq

Analogous statements hold forK - and KO -theory
Richard and | proved a Z{kZ analog of the Atiyah-Singer index theorem that equates a-ind

and t-ind for symbols of elliptic operators; it can be useq to computeZ{kZ-periods of a
K -theory class (Higson gave an alternative proof usingC"-algebras)
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Method 4 ( FBMelrose )

Now apply a KO version of our index theorem (proved?) for real elliptic operators

M 12 closed pin manifold

ERIV] real vector bundle

wis compact Z{kZ-manifold with BW O k -M
BRL. S extension ofE !, M

l: KO%pWaq !, %Z 3 Z  direct image

Combine the mod k index theorem with Atiyah-Patodi-Singer for pin manifolds to obtain

R
Theorem:" ", EEG{2 O N rES



Happy Birthday, Richard!



