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Abstract

We characterize when John domains arise in the setting of Kleinian
groups.

1 Introduction

A region U in the Riemann sphere is a John domain if every point in U can
be reached from a fixed basepoint by a flexible cone with a definite angle at
its vertex.

John domains were introduced by Fritz John in his study of strain and
the stability of quasi-isometries [John]. A Jordan curve cuts the sphere into
a pair of John domains if and only if it is a quasicircle [Pom, Thm 5.9]. Thus
a simply-connected John domain is like a one-sided quasidisk.

In this paper we give a new characterization of John domains in terms
of 3-dimensional hyperbolic geometry (§2). From this perspective the John
condition becomes an asymptotic quasi-isometry invariant in the sense of
Gromov [Gr].

Recently Carleson, Jones and Yoccoz found that the John condition is
directly related to expansion in conformal dynamics [CJK]. These authors
show the basin of infinity for a polynomial f(z) is a John domain if and
only if f(z) has no parabolic orbits and no critical point in the Julia set
accumulates on itself under forward iteration.

Here we provide a complement to this dynamical theorem in the setting
of Kleinian groups. We characterize exactly when a component of the do-
main of discontinuity is a John domain (§3), and also when it is uniformly
connected (§4). Our results are motivated by the analogies between iterated
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rational maps and Kleinian groups that have emerged in the past decade;
see [Sul2] and [Mc1] for part of the dictionary.

In §5 we provide examples and computer images illustrating the results
below. We also amplify on the distinction between limit sets and Julia
sets, by giving examples where both are dendrites, but of radically different
geometry.

Statement of results. Let Γ be a nonelementary, finitely generated
Kleinian group, that is a discrete subgroup of conformal automorphisms
of the Riemann sphere S2

∞
= ∂H3. The sphere is naturally partitioned into

a limit set Λ, where the dynamics of Γ is chaotic, and a domain of discon-
tinuity Ω, where the orbits of Γ are discrete. These sets can be complex
in shape and topology, but they are also homogeneous and self-similar, by
Γ-invariance.

Let U ⊂ S2
∞

a component of Ω with stabilizer ΓU ⊂ Γ. Then we have:

Theorem 1.1 The component U is a John domain iff

(a) ΓU is geometrically finite, and
(b) every parabolic element of ΓU stabilizes a round disk in U .

Condition (b) means every cusp of the 3-manifold H3/ΓU is represented
by a cusp of the Riemann surface U/ΓU .

Corollary 1.2 The component U is a simply-connected John domain iff it
is a quasidisk.

A region V is uniformly connected if for any sequence of Möbius trans-
formations, any Hausdorff limit of gn(V ) is connected.

Theorem 1.3 The component U is uniformly connected iff there is no parabolic
element in ΓU stabilizing a pair of tangent round disks in U .

Note that ΓU is allowed to be geometrically infinite. The parabolic
condition rules out a cylinder in H3/ΓU joining a pair of cusps of U/ΓU .

Corollary 1.4 A simply-connected component of the domain of discontinu-
ity of a finitely generated Kleinian group is always uniformly connected.

In contrast, uniform connectivity often fails to hold for the Fatou set of
a rational map. Thus Theorem 1.3 and its Corollary highlight a difference
between these two types of conformal dynamical systems.

The questions addressed here emerged from joint work with Mike Freed-
man [FM]. See [BV] for more on John domains and Julia sets. Basic facts
about hyperbolic manifolds used in the sequel can be found in [Th], [BP]
and [Rat].
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2 John domains

Let Hn denote hyperbolic n-space and Sn−1
∞

its sphere at infinity. A region
U ⊂ Sn−1

∞
is a John domain if there is an a ∈ U and an ǫ > 0 such that for

any b ∈ U , there is a path p : [0, 1] → U with p(0) = a, p(1) = b and

d(p(t), ∂U) > ǫ · d(p(t), b) (2.1)

for all t ∈ [0, 1]. Distances above are measured in the spherical metric.

The John condition.

The John condition means b can be reached from a by a flexible cone
with definite angle at b. In a John domain, any point can play the role of
the basepoint a (possibly after changing ǫ).

The notion of a John domain was introduced in [John, p.402]. Various
equivalent definition are compared in [NV]. Here we use the version adapted
to domains in the sphere.

To prove Theorem 1.1, it is convenient to have a definition of John
domains that involves hyperbolic geometry. In this section we will show:

Theorem 2.1 Let U ⊂ Sn−1
∞

be an open connected set whose complement
contains at least 2 points. Let Û be the associated boundary component of a
unit neighborhood of the convex hull of ∂U in Hn.

Then U is a John domain iff Û is quasi-starlike.

Convex hulls and starlike sets. Let Hn = Hn ∪ Sn−1
∞

denote the com-
pactification of hyperbolic space by the sphere at infinity. We will use the
interval notation

[x, y] ⊂ Hn
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to denote the geodesic joining a pair of points in Hn; the endpoints are
included, even if they lie in Sn−1

∞
.

A set K ⊂ Hn is convex if a, b ∈ K =⇒ [a, b] ⊂ K. The smallest convex
set containing a given set E is its convex hull, denoted hull(E). Given a
closed convex set K, the nearest point projection

πK : Hn → K

sends x to the point πK(x) closest to K. For x ∈ Hn closeness is measured
with the hyperbolic metric; for x ∈ Sn−1

∞
− K, πK(x) is the point where a

horoball inflated at x first touches K.
For a region U ⊂ Sn−1

∞
, let K = N1(hull(∂U)) be the closed unit neigh-

borhood of the convex hull of ∂U , and let

Û = πK(U).

Then Û is the part of ∂K in Hn that faces U , and πK : U → Û is a
homeomorphism.1

A set X ⊂ Hn is starlike if there exists an a ∈ X such that [a, b] ⊂ X
for all b ∈ X. This condition is like convexity from a single point. Similarly,
X is quasi-starlike if there is an a ∈ X and R > 0 such that for any b ∈ X,
there is a path p : [0, 1] → X with p(0) = a, p(1) = b and

d(p(t), [a, b]) < R (2.2)

for all t ∈ [0, 1].

Proof of Theorem 2.1. Suppose U is a John domain with basepoint a.
Let K = N1(hull(∂U)) and normalize by a Möbius transformation so that
â = πK(a) = 0 in the Poincaré ball model for Hn as the unit ball in Rn.
With this normalization, it is easy to approximate x̂ = πK(x) to within a
bounded hyperbolic distance; namely

x̂ ≈ (1 − r(x))x, (2.3)

where r(x) = d(x, ∂U). To see this, just note that supporting hyperplanes
for K correspond to round disks in Sn−1

∞
− ∂U .

Given b̂ ∈ Û , choose b ∈ U with πK(b) = b̂ and let p : [0, 1] → U be a
path from a to b satisfying (2.1). We claim p̂(t) = πK(p(t)) satisfies (2.2).

1We take K = N1(hull(∂U)) because the projection U → hull(∂U) can be far from
injective; consider the case where ∂U is a circular arc in S

2

∞
.

4



Indeed, the hyperbolic metric blows up like 1/(1 − ρ) in polar coordinates
on the ball, so

d(p̂(t), [â, b]) ≈
d(p(t), b)

r(p(t))
<

1

ǫ

by the John condition and (2.3). The broken geodesic [â, b̂] ∪ [̂b, b] makes
an angle of at least 90◦ at b̂, so [â, b̂] ⊂ N1([â, b]). Finally r(p(t)) > ǫr(b)/2
which implies

d(â, p̂(t)) < d(â, b̂) + O(log(1/ǫ)).

Thus the projection of p̂(t) to [â, b] lies close to [â, b̂], and we find

d(p̂(t), [â, b̂]) < R

with R ≈ 1/ǫ. Thus Û is quasi-starlike.
Conversely, suppose Û is quasi-starlike from â ∈ Û , normalized as before

so â = 0. Then for a, b ∈ U corresponding under πK to â, b̂ ∈ Û , let
p = π−1

K
◦ p̂, where d(p̂(t), [â, b̂]) < R. Then

d(p(t), b)

r(p(t))
≈ d(p̂(t), [â, b]) < R + 1,

so the John condition for U is verified with ǫ ≈ 1/(R + 1).

Quasi-convexity. Let us say X ⊂ Hn is quasi-convex if there exists
an R such that any a, b ∈ X are joined by a path p : [0, 1] → X with
d(p(t), [a, b]) < R. The following result is fairly well-known.

Theorem 2.2 A simply-connected region U ⊂ S2
∞

is a quasidisk iff Û is
quasiconvex.

Sketch of the proof. If Û is quasiconvex, then it is quasi-isometric to
a hyperbolic plane and so ∂Û ⊂ S2

∞
is a quasicircle by [GH, Prop. 7.14].

Conversely, if U is a quasidisk, then Poincaré geodesics in U project to
quasi-geodesics in Û , so Û is quasi-convex.

In particular for simply-connected regions U ⊂ S2
∞

we have:

U is a quasidisk ⇐⇒ Û is quasi-convex,

U is a John disk ⇐⇒ Û is quasi-starlike.
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3 Kleinian groups

In this section we prove the following more precise version of Theorem 1.1.

Theorem 3.1 Let U be a component of the domain of discontinuity of a
nonelementary, finitely-generated Kleinian group Γ. Then the following are
equivalent:

1. U is a John domain.

2. Û is quasi-starlike.

3. Û is quasi-convex.

4. ΓU is geometrically finite, and every parabolic in ΓU stabilizes a round
disk in U .

Remark. The John condition fails dramatically when ΓU is geometrically
infinite, since then H.dim(∂U) = 2 by a result of Bishop and Jones [BJ].

The proof of Theorem 3.1 is elementary apart from the use of:

Theorem 3.2 (Ahlfors Finiteness Theorem) If Γ is a finitely gener-
ated Kleinian group with domain of discontinuity Ω, then Ω/Γ is a finite
union of hyperbolic Riemann surfaces of finite area.

See [Ah], [Gre], [Bers1], [McS].
It is worth noting that ΓU is almost determined by U . Indeed, let Aut(U)

be the group of all Möbius transformations stabilizing U . Suppose a compo-
nent U of Ω is not a round disk; then Aut(U) is discrete, and it contains ΓU

with finite index because U/ΓU covers U/Aut(U). So at least in principle,
most properties of ΓU are reflected in the geometry of U .

Proof of Theorem 3.1. First some preliminary reductions. By passing to
a subgroup of finite index, we may assume Γ is orientation-preserving and
torsion-free. By the Ahlfors Finiteness Theorem, U/ΓU has finite area, and
thus the limit set of ΓU is ∂U . Therefore we can also assume Γ = ΓU and
Λ = ∂U .

Following §2, let

K = N1(hull(∂U)),

Û = πK(U) ⊂ ∂K,

K(M) = K/Γ and

U(M) = Û/Γ.
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Then U(M) ⊂ ∂K(M) is the component of the boundary of a unit neigh-
borhood of the convex core of M that faces U .

(1) ⇐⇒ (2). This is Theorem 2.1.

(2) =⇒ (4). Suppose Û is quasi-starlike from some basepoint a. Then
there exists an R such that for any γ ∈ Γ, the geodesic segment [a, γa] is
contained within an R-neighborhood of Û . Since Γ acts by isometries, we
have [γa, δa] ⊂ NR(Û) for all γ, δ ∈ Γ. But Γa accumulates densely on
∂U , so any geodesic with endpoints in ∂U is also contained in NR(Û). Any
point in hull(∂U) is within a universally bounded distance of a geodesic with
endpoints in ∂U , so K = N1(hull(∂U)) is contained in an S-neighborhood
of Û , S = R + O(1). Passing to the quotient by Γ we find

K(M) ⊂ NS(U(M)).

Since U(M) has finite area, the thick part of K(M) is compact and thus M
is geometrically finite. Also the cuspidal parts of K(M) lie within a bounded
distance of U(M), so every cusp in M has rank one and is represented by
a cusp of U/Γ. Therefore any parabolic γ ∈ Γ stabilizes a round disk in U .
(This last condition can also be seen directly by considering a John cone in
U touching the fixed-point of γ; the γ-orbit of this cone contains a round
disk and is contained in U .)

(4) =⇒ (2). This is the main implication in the proof. For simplicity we
first suppose Γ = ΓU is geometrically finite without cusps. Then K(M) and
U(M) are closed manifolds.

Choose a finite 0-complex U0 ⊂ U(M) such that any point in U(M)
can be moved slightly to belong to U0. Extend U0 to a finite 1-complex
M1 ⊂ K(M) such that any path in K(M) can be moved slightly to run
along the edges of M1. (For example one can take M1 to be the 1-skeleton
of a very fine triangulation.)

Since Γ = ΓU , the morphism π1(U(M)) → π1(K(M)) is surjective. By
elementary homotopy theory, the inclusion

i : (M1, U0) →֒ (K(M), U0)

can be deformed, as a map of pairs, to a map

h : (M1, U0) → (U(M), U0).

Since M1 is compact, the homotopy H : [0, 1]×M1 → K(M) between i and
h need only move points some bounded distance R; that is, we can choose
H such that the length of H([0, 1], x) is less than R for all x.
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Now given a, b ⊂ Û lying over vertices in U0, project the geodesic [a, b]
to a parameterized path q : [0, 1] → K(M). Move the path slightly, keeping
its endpoints fixed in U0, so it runs along M1. Then h ◦ q : [0, 1] → U(M)
admits a bounded homotopy, rel endpoints, to q. Thus its lift

p = h̃ ◦ q : [0, 1] → Û

joins a to b and satisfies
d(p(t), [a, b]) < R

for all t. Since any a, b ∈ Û can be moved slightly to lie over U0, we have
shown that Û is quasi-starlike.

The case of cusps. We now treat the case where Γ is geometrically finite,
possibly with cusps. Assuming all parabolics of Γ are represented by cusps
on U/Γ, we will again show Û is quasi-starlike.

Since Γ is geometrically finite, standard horoball neighborhoods of the
cusps of M meet K(M) in a finite number of rank one cuspidal pieces
〈Ki(M) : i = 1, . . . n〉, each quasi-isometric to C × [0, 1] where

C = {z ∈ H : Im(z) ≥ 1}/〈z 7→ z + 1〉

is a standard cusp on a hyperbolic surface. The cusp Ki(M) meets ∂K(M)
in two components, corresponding to C × {0, 1}. At least one of these
components, Ui(M), belongs to U(M), since the corresponding parabolic
subgroup stabilizes a round disk in U .

Removing the cusps, we obtain a pair of compact manifolds

K∗(M) = K(M) −
⋃

Ki(M),

U∗(M) = U(M) ∩ K∗(M)

homotopy equivalent to (K(M), U(M)). Since π1(U
∗(M)) → π1(K(M)) is

surjective, we can construct a pair of complexes (M1, U0) →֒ (K∗(M), U∗(M))
as before, such that the inclusion is homotopic to h : (M1, U0) → (U∗(M), U0).

Now pick a basepoint a ∈ Û lying over U0, and consider any b ∈ Û . Let
q : [0, 1] → K(M) be the projection to M of the geodesic [a, b]. To verify
that Û is quasi-starlike (and hence that U is a John domain), it suffices
to show q admits a uniformly bounded isotopy, rel endpoints, to a path in
U(M).

First suppose b lies over a point in U0. Each cusp Ki(M) admits a
bounded retraction to Ui(M); use these to adjust q by a bounded homotopy
so it stays within U(M)∪K∗(M). Next move q slightly within K∗(M) so it
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runs along M1. Then h ◦ q is contained in U(M), and boundedly homotopic
to q, so we have verified the quasi-starlike condition for b.

Now suppose b lies over a point in U∗(M). Then b can be moved slightly
to lie over a point in U0, and the preceding argument applies.

Finally suppose b lies over a cusp Ki(M). Then we must take care to
choose Ui(M) to be the component of Ki(M)∩U(M) into which b projects.
(Potentially Ki(M) ∩ U(M) has two components.) With this choice, the
retraction of Ki(M) to Ui(M) fixes b, and the bounded homotopy from q to
a path in U(M) is constructed as before.

(2) ⇐⇒ (3). Once Û is quasi-starlike from a basepoint a, it is also quasi-
starlike (with the same constant) from any other basepoint in Γa. When
U/Γ is compact this immediately implies Û is quasi-convex. But the result
also holds when U/Γ has cusps, by an analysis of the thin part similar to
that above.

Proof of Corollary 1.2. If U is a simply-connected John domain, then Û
is quasi-convex by the preceding result, and therefore U is a quasidisk by
Theorem 2.2.

Alternatively, one may use the fact that a geometrically finite surface
group without accidental parabolics is quasifuchsian (cf. [Bers2], [Msk]).

4 Uniform connectivity

In this section we prove Theorem 1.3, showing U is uniformly connected
unless it has a double cusp.

Definition. Let U,Un ⊂ S2
∞

be open sets. We say Un → U in the Hausdorff
topology if

(a) any compact set K ⊂ U is contained in Un for all n ≫ 0, and
(b) if a fixed neighborhood V of x is contained in Un for infinitely
many n, then x ∈ U .

Equivalently, Un → U if (S2
∞

− Un) → (S2
∞

− U) in the usual Hausdorff
topology on closed subsets of the sphere [Haus].

A set U is uniformly connected if lim gn(U) is connected (or empty) for
any sequence of Möbius transformations gn such that gn(U) converges.

An alternative definition, displaying the uniformity more directly, is as
follows: U is uniformly connected if there is a function δ(ǫ) > 0 such that
for x1, x2 ∈ U and ǫ > 0, if d(x1, x2) = s and B(xi, ǫs) ⊂ U , i = 1, 2, then
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there is a path p : [0, 1] → U , joining x1 to x2, with d(x1, p(t)) < s/δ(ǫ) and
d(p(t), ∂U) > δ(ǫ)s for all t.

Proof of Theorem 1.3. As before, we can assume Γ = ΓU and Γ is a
torsion-free.

Suppose there is a parabolic element γ ∈ Γ stabilizing a pair of round
disks in U ⊂ Ĉ ∼= S2

∞
. After a Möbius change of coordinates we can assume

γ(z) = z/(1 + z) and
{z : |z ± ir| < r} ⊂ U

for some r > 0. Since Γ is nonelementary, by iterating γ we find the limit
set contains the sequence 〈1/(k + w), k ∈ Z〉 for some w ∈ C. Thus if we
blowup around the origin with the Möbius transformations gn(z) = nz, we
find that gn(U) → C − R and thus U is not uniformly connected.

For the converse, suppose any parabolic stabilizes at most one round
disk in U , and gn(U) → V in the Hausdorff topology. We will show that V
is connected.

It is not hard to check that gn(Û) → V̂ in the Hausdorff topology on
closed subsets of H3. Let 0 denote the origin in the ball model for H3 ∼=
B3 ⊂ R3, and let gn(xn) = 0. If d(xn, Û) → ∞, then d(0, gn(Û)) → ∞ and
thus V̂ = ∅. In this case, V = ∅ or |S2

∞
− V | = 1 (according to whether xn

stays on the convex or concave side of Û). So V is connected.
If d(xn, Û) does not tend to infinity, we can pass to a subsequence such

that d(xn, Û ) is bounded, and indeed we can assume xn ∈ Û by a minor
modification of gn. Consider the image [xn] of xn in

U(M) = Û/Γ ⊂ M = H3/Γ.

By the Ahlfors Finiteness Theorem, U/Γ is a hyperbolic surface of finite
area, so the part of U(M) outside the cusps of M is compact. If [xn] has
a convergence subsequence in U(M), then there are γn ∈ Γ such that a
subsequence of gnγn converges to g ∈ Isom(H3); since γn(U) = U , we have
gn(U) → g(U) = V and thus V is connected.

Finally suppose [xn] ∈ U(M) tends to infinity in U(M). Then after
passing to a subsequence, xn tends to a definite cusp of M . By assumption,
the corresponding parabolic subgroup of Γ stabilizes only one round disk in
U , and thus U(M) meets a horoball neighborhood of the cusp in only one
component. It follows that V̂ = lim gn(Û ) is connected, and therefore V is
connected.
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Proof of Corollary 1.4. We have an exact sequence

1 → π1(U) → π1(U/ΓU ) → ΓU → 1.

If a single parabolic in ΓU stablizes a pair of round disks in U , then there
are two peripheral loops on U/ΓU mapping to the same element of ΓU , and
thus π1(U) 6= 1.

Local connectivity. It is at present unknown if ∂U is always locally
connected when U is a component of the domain of discontinuity of a finitely-
generated Kleinian group.

Some care is required to construct a uniformly connected domain U such
that ∂U is not locally connected. For a typical example, take U = C − S
where S is a square with strips removed,

S = [0, 2] × [0, 2] −
∞⋃

1

(an, an + a2
n) × [0, 1), an = 1/(2n)n.

Since an/an+1 → ∞, at most one strip in U is visible in any Hausdorff limit,
and thus U is uniformly connected. On the other hand ∂U is not locally
connected where the strips accumulate.

By Theorem 1.3, any failure of local connectivity in Kleinian groups must
similarly involve narrow fjords at very different scales.

5 Examples

1. Figure 1 depicts the limit set of a geometrically finite group lying in
Bers’ boundary for the Teichmüller space of a surface of genus two.
The unbounded component U of Ω is Γ-invariant, and U/Γ is a surface
of genus 2; the remainder of Ω/Γ is comprised of a pair of punctured
tori. Thus Γ has accidental parabolics that are not represented in U ,
so by Theorem 2.1, U is not a John domain.

The failure of the John condition is evident at each parabolic fixed-
point; for example, the point of tangency between two circles in the
center of the picture cannot be reached by a John cone contained in
U .

The parameters for this example were provided by Jeff Brock.

2. Figure 2 depicts the limit set of a geometrically finite Kleinian Γ iso-
morphic to the HNN-extension Γ(2)∗Z. Here Γ(2) is a Fuchsian group
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            ��������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

Figure 1. Failure of the John condition.

            ��������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

Figure 2. An infinitely connected John domain with parabolics.
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uniformizing the triply-punctured sphere, and Z = 〈h〉 is generated
by a hyperbolic element with one fixed point in each component of
Ω(Γ(2)).

The quotient Riemann surface Ω/Γ is a torus with 3 punctures. Since
all 3 cusps of H3/Γ are represented on Ω/Γ, all components of Ω are
John domains.            ��������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

Figure 3. Bottlenecks.

3. Figure 3 shows the limit set of a group Γ ∼= Z ∗ Z in Maskit’s em-
bedding of the Teichmüller space of a punctured torus. The domain
of discontinuity has a single invariant component U ; the remaining
components of Ω are round disks. The domain U has a ‘bottleneck’
in the center of the picture, due to a nearly parabolic element in Γ.
The pair of spiraling arms in the center of the picture converge to the
fixed-points of this almost-parabolic element.

Nevertheless, U is uniformly connected by Corollary 1.4. Although one
can make examples with arbitrarily narrow bottlenecks, in any fixed
example there is a uniform modulus of connectivity. Because U/Γ is a
finite surface, only a finite number of types of bottlenecks are present
in any given picture.
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In this example U/Γ is a punctured torus, and the rest of Ω/Γ is a
triply-punctured sphere. The puncture of the torus accounts for only
one of the three cusps of the triply-punctured sphere, so U is not a
John domain. The failure of the John condition can be seen in the
picture at 3 o’clock and 9 o’clock, where U is pinched between a pair
of tangent circles.

The parameters for this group were obtained with the aid of a com-
puter program written by David Wright [Wr].
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Figure 4. Failure of uniform connectivity.

4. Figure 4 shows the limit set of a typical group Γ with a component
U ⊂ Ω that is not uniformly connected. In this example Γ ∼= Γ′ ∗ Z

where Γ′ is a Fuchsian group of genus 2 and Z = 〈p〉 is generated by a
parabolic element. The fixed point of p is in the center of the picture
and also in the center of one component of Ω(Γ′). The quotient U/Γ
is a surface of genus 2 with two punctures, both corresponding to the
same cusp of M = H3/Γ. Under expansion of the picture about the
fixed-point of p, U converges to the disconnected domain C − R, and
thus U is not uniformly connected.

5. Figure 5 depicts the Julia set J(f) for f(z) = z2 + c where c ≈
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Figure 5. A Julia dendrite.
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Figure 6. A Kleinian dendrite.
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−1.54369 . . . is chosen so f3(0) = f4(0). Here J(f) is a locally con-
nected dendrite.

The complementary region U = Ĉ−J(f) is a John domain [CJK], but
it is not uniformly connected. Indeed, under suitable blowups around
the origin, U converges to a planar region with 4 components, divided
by 4 limiting arms of the Julia set. Compare [Tan].

6. The snowflake in Figure 6 is also a locally connected dendrite, arising
as the limit set Λ of a geometrically infinite Kleinian group. In this
example Γ is isomorphic to 〈a, b : [a, b]3 = 1〉, the fundamental group
of a 2-dimensional orbifold S of genus one with a singular point of
order 3. This Γ lies on the boundary of Bers’ embedding of Teich(S),
where it behaves as the attracting fixed-point for the pseudo-Anosov
mapping class ( 2 1

1 1
). An extended discussion of such groups can be

found in [Mc2, §3] and [Mc3, §7].

The domain of discontinuity U = S2
∞

− Λ is uniformly connected,
but not a John domain, as is evident from the narrow fjords reaching
towards the center of the picture. In fact ∂U has measure zero [Th]
but Hausdorff dimension two [Sul1], [BJ].

The center of symmetry c of the picture is a cut point of the limit
set; Λ − {c} has six components. However, under blowups about c,
the limit set converges to the plane and the region U converges to
the empty set [Mc2, p.68], in contrast to the Julia set of example 5.
Indeed, the furriness of Λ near any cut point is necessary by uniform
connectivity of U .
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