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1 Introduction

In this paper we show that rotation cycles on S1 for a proper holomorphic
map f : ∆ → ∆ share several of the analytic, geometric and topological
features of simple closed geodesics on a compact hyperbolic surface.

Dynamics on the unit disk. Let ∆ = {z ∈ C : |z| < 1}. For d > 1 let
Bd

∼= ∆(d−1) denote the space of all proper holomorphic maps f : ∆ → ∆ of
the form

f(z) = z
d−1∏

1

(
z − ai
1− aiz

)
,

|ai| < 1. Every degree d holomorphic map g : ∆ → ∆ with a fixed point in
the disk can be put into the form above, by normalizing so its fixed point is
z = 0.

The maps f ∈ Bd have the property that f |S1 is measure-preserving and
|f ′| > 1 on the circle. Moreover, there is a unique marking homeomorphism
φf : S1 → S1 that varies continuously with f , conjugates f to pd(z) = zd,
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and satisfies φf (z) = z when f = pd. We define the length on f of a periodic
cycle C for pd by

L(C, f) = log |(f q)′(z)|, (1.1)

where q = |C| and φf (z) ∈ C.
The degree of a cycle C is the least e > 0 such that pd|C extends to a

covering map of the circle of degree e. We say C is simple if deg(pd|C) = 1;
equivalently, if pd|C preserves its cyclic ordering. A finite collection of cycles
Ci is binding if deg(

⋃
Ci) = d and if

⋃
Ci is not renormalizable (§7).

In this paper we establish four main results.

Theorem 1.1 Any cycle with L(C, f) < log 2 is simple. All such cycles Ci

have the same rotation number, and pd|
⋃

Ci preserves the cyclic ordering
of
⋃

Ci.

Theorem 1.2 Every f ∈ Bd has a simple cycle C with L(C, f) = O(d).

Theorem 1.3 Let (Ci)
n
1 be a binding collection of cycles. Then for any

M > 0, the set of f ∈ Bd with
∑n

1 L(Ci, f) ≤ M has compact closure in the
moduli space of all rational maps of degree d.

Theorem 1.4 The closure E ⊂ S1 of the simple cycles for a given f ∈ Bd

has Hausdorff dimension zero.

See Theorems 4.1, 5.8, 7.1 and 2.2 below.

Hyperbolic surfaces. The results above echo the following fundamental
facts about compact hyperbolic surfaces X of genus g > 1:

1. The closed geodesics on X of length less than log(3+ 2
√
2) are simple

and disjoint.

2. There exists a simple closed geodesic on X with length O(log g).

3. If (γi)
n
1 is a binding collection of closed curves, then the locus in Te-

ichmüller space Tg where
∑

L(γi,X) ≤ M is compact for any M > 0.1

4. The union of the simple geodesics on X = ∆/Γ is a closed set of
Hausdorff dimension one.

See [Bus, §4, §5], [Ker, Lemma 3.1] and [BS] for proofs. Thus simple cycles
behave in many ways like simple closed geodesics.

1A collection of closed curves is binding if their geodesic representatives cut X into

disks.
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Figure 1. Tiling of ∆∗ according to the slope of the shortest loop on the torus

C∗/αZ.

Rotation numbers and slopes. Next we formulate a more direct con-
nection between short cycles and short geodesics. Suppose f ∈ Bd satisfies
α = f ′(0) = exp(2πiτ) 6= 0. The action of 〈f〉 on ∆ (with the orbit of z = 0
removed) determines a natural quotient torus, isomorphic to

Xτ = C/(Z ⊕ Zτ) ∼= C∗/αZ.

Let L(p/q,Xτ ) denote the length of a closed geodesic on Xτ in the homo-
topy class (−p, q), for the flat metric of area one. The slope p/qmod 1 which
minimizes L(p/q,Xτ ) depends only on f ′(0) ∈ ∆∗. The regions T (p/q) ⊂ ∆∗

where a given slope is shortest rest on the corresponding roots of unity, and
form a tiling of ∆∗ (see Figure 1).

In §6 we will show:

Theorem 1.5 For any f ∈ Bd with f ′(0) ∈ T (p/q), there is a nonempty
collection of compatible simple cycles Ci with rotation number p/q such that

1

L(p/q,Xτ )2
≤
∑ π

L(Ci, f)
≤ 1

L(p/q,Xτ )2
+O(d),

and all other cycles satisfy L(C, f) > ǫd > 0.

(Compatibility is defined in §2.) This result implies Theorem 1.2 and gives
an alternate proof of Theorem 1.1 (with log 2 replaced by ǫd); it also yields:
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Corollary 1.6 If a sequence fn ∈ Bd satisfies L(C, fn) → 0, then f ′
n(0) →

exp(2πip/q) where p/q is the rotation number of C.

On the other hand, we will see in §3:
Proposition 1.7 If fn ∈ Bd and f ′

n(0) → exp(2πiθ) where θ is irrational,
then L(C, fn) → ∞ for every cycle C.

Thus the cycles of moderate length guaranteed by Theorem 1.2 may be
forced to have very large periods.

Petals. The proof of Theorem 1.5 is illustrated in Figure 2. Consider a
map f ∈ B2 with f ′(0) = exp(2πiτ) ∈ T (1/3), τ = 1/3 + i/10. The dark
petals shown in the figure form the preimage Ã ⊂ ∆ of an annulus A in the
homotopy class [3τ − 1] on the quotient torus for the attracting fixed point
at z = 0. Any two adjacent rectangles within a petal give a fundamental
domain for the action of f . The three largest petals join z = 0 to the
repelling cycle on S1 labeled by C = (1/7, 2/7, 4/7). Thus a copy of A
embeds in the quotient for torus the repelling cycle as well; by the method
of extremal length (§5), this gives an upper bound for L(C, f) in terms of
L(1/3,Xτ ). (The lower bound comes from the holomorphic Lefschetz fixed-
point theorem.)

Figure 2. Petals joining z = 0 to the (1, 2, 4)/7 cycle on S1.

Rational maps. Here is a related result from §5 for general rational maps
f : Ĉ → Ĉ. Let L(f) = inf log |β|, where β ranges over the multipliers of all
repelling and indifferent periodic cycles for f .
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Theorem 1.8 If fn ∈ Ratd and L(fn) → ∞, then the maps fn have fixed
points zn with f ′(zn) → 0.

Questions. We conclude with some natural questions suggested by the
analogy with hyperbolic surfaces.

1. Let C be a simple cycle. Is the function L(C, f) free of critical points
in Bd?

2. Let (Ci) be a binding collection of cycles. Does
∑

L(Ci, f) achieve its
minimum at a unique point f ∈ Bd?

3. Let QBd denote the space rational maps of the form

f(z) = z
d−1∏

1

(
z − ai
1− biz

)

such that
∏ |ai| < 1,

∏ |bi| < 1, and J(f) is a Jordan curve. Each
f ∈ QBd can be regarded as a marked quasiblaschke product, obtained
by gluing together a pair of maps f1, f2 ∈ Bd using their markings on
S1.

Does there exist an ǫd > 0 such for all f ∈ QBd, all cycles of length
shorter than ǫd are simple?

4. Suppose the cycles (C1, C2) are binding. Does the set of f ∈ QBd with
L(C1, f1) + L(C2, f2) ≤ M have compact closure in the moduli space
of all rational maps of degree d?

The analogous questions for hyperbolic surfaces and quasifuchsian groups
are known to have positive answers [Ker, §3], [Ot], [Th, Thm 4.4].

Notes and references. This paper is a sequel to [Mc4] and [Mc5], which
construct a Weil-Petersson metric on Bd and an embedding of Bd into the
space of invariant measures for pd(z) = zd.

Simple cycles in degree two play a central role in the combinatorics of
the Mandelbrot set [DH], [Ke], and are studied for higher degree in [Gol]
and [GM]. Extremal length arguments similar to those we use in §5 are
well-known both in the theory of Kleinian groups [Bers, Thm. 3], [Th,
Proposition 1.3], [Mc1, §6.3], [Pet1], [Mil2] and rational maps [Pom], [Lev],
[Hub], [Pet2]. The quotient Riemann surface of a general rational map is
discussed in [McS]; other aspects of the dictionary between rational maps
and Kleinian groups are presented in [Mc2]. See [PL] for a related discussion
of spinning degenerations of the quotient torus.
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2 Simple cycles

In this section we discuss the combinatorics of periodic cycles for the map
pd(t) = d · tmod 1, and prove the closure of the simple cycles has Hausdorff
dimension zero.

Degree and rotation number. Let S1 = R/Z. Given a 6= b ∈ S1, let
[a, b] ⊂ S1 denote the unique subinterval that is positively oriented from a
to b. We write a < c < b if c ∈ [a, b]. The length of an interval is denoted
|I|.

Let f : S1 → S1 be a topological covering map of degree d > 0, and
suppose f(X) = X. The degree of f |X, denoted deg(f |X), is the least e > 0
such that f |X extends to a topological covering g : S1 → S1 of degree e.

Note that deg(f |X) = 1 iff f preserves the cyclic ordering of X, in which
case f |X also has a well-defined rotation number ρ(f |X) ∈ S1. If X is finite
then ρ(f |X) = p/q is rational and the orbits of f |X have size q.

Example: Suppose X = {x0, x1, . . . , xn = x0} in increasing cyclic order,
and f |X is a permutation; then we have

deg(f |X) =
n−1∑

0

|[f(xi), f(xi+1)]|.

Indeed, an extension of f |X of minimal degree is obtain by mapping [xi, xi+1]
homeomorphically to [f(xi), f(xi+1)]. The degree is thus a variant of the
number of descents of a permutation (see e.g. [St, §1.3]).
The model map and its modular group. Now fix d > 1, and let pd(t) =
d · tmod 1. Any expanding map f : S1 → S1 of degree d is topologically
conjugate to pd [Sh].

The modular group Modd ⊂ Aut(S1) is the cyclic group of rotations
generated by t 7→ 1/(d− 1) + tmod 1; it coincides with the group of (degree
one) topological automorphisms of pd. Note that Modd acts transitively on
the fixed points of pd.

Simple cycles. A finite set C ⊂ S1 is a cycle of degree d if pd|C is a
transitive permutation. As in §1, we say a cycle is simple if deg(pd|C) = 1.
Simple cycles (C1, . . . , Cm) are compatible if deg(pd|

⋃
Ci) = 1.

It is elementary to see:

Proposition 2.1 The simple cycles (C1, . . . , Cm) are compatible iff they are
pairwise compatible.
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We let Cd denote the set of all cycles of degree d, and Cd(p/q) ⊂ Cd the
simple cycles with rotation number p/q.

Portraits of fixed points. The fixed-point portrait [Gol] of a simple cycle
C ∈ Cd(p/q) is the monotone increasing function

σ : {1, . . . , d− 2} → {0, 1, . . . , q}

given by
σ(j) = |C ∩ [0, j/(d − 1))|.

This invariant specifies how C is interleaved between the fixed points of pd,
which are all of the form j/(d − 1)mod 1.

Basic properties. The following results are immediate from [Gol] (see
especially Lemma 2 and Theorem 7).

1. A simple cycle C ∈ Cd(p/q) is uniquely determined by its fixed-point
portrait σ(j), and all possible monotone increasing functions σ(j)
arise.

2. The number of simple cycles of degree d and rotation number p/q is(d+q−2
q

)
.

3. The number of cycles of period q grows like dq, while the number of
simple cycles is O(qd−1); so most cycles are not simple.

4. Cycles C1, C2 ∈ Cd(p/q) are compatible iff their fixed-point portraits
satisfy

σ1(j) ≤ σ2(j) ≤ σ1(j) + 1

for 0 ≤ j ≤ d− 2, or the same with σ1 and σ2 reversed.

5. Every maximal collection of compatible cycles has cardinality d− 1.

From portraits to cycles. A simple cycle C ∈ Cd can be reconstructed
explicitly from its rotation number p/q and its fixed-point portrait σ as
follows. Let τ be the ‘transpose’ of σ, namely the monotone function τ :
{0, 1, . . . , q − 1} → {0, 1, . . . , d− 1} given by

τ(i) = |{j : σ(j) ≤ i}|, (2.1)

and let

τ ′(i) = τ(i) +

{
0 if 0 ≤ i < q − p, and

1 otherwise,
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where i is taken mod q. Then the periodic point given by t = 0.τ ′(0)τ ′(p)τ ′(2p) . . .
in base d generates C; indeed, t is the ‘first point’ in the cycle C.

Examples. To simplify notation, let (p1/q, . . . , pm/q) = (p1, . . . , pm)/q,
and let σ = n1 . . . nd−1 denote the function with values σ(j) = nj.

Degree d = 2. In the quadratic case, σ is trivial and hence there is a
unique simple cycle C(p/q) for each possible rotation number; e.g.

C(1/2) = (1, 2)/3,

C(1/3) = (1, 2, 4)/7,

C(2/5) = (5, 10, 20, 9, 18)/31.

The only cycle of period ≤ 4 which is not simple is C = (1, 2, 4, 3)/5. For pe-
riod 5 there are two such, namely C and −C where C = (3, 6, 12, 24, 17)/31.
Any two distinct quadratic simple cycles are incompatible.

Degree d = 3. In the cubic case pd has two fixed points, 0 and 1/2, and
three cycles of period two, given by

C(1/2, 0) = (5, 7)/8,

C(1/2, 1) = (1, 3)/4 and

C(1/2, 2) = (1, 3)/8.

The first and last are incompatible, while the other pairs are compatible. In
general there are q+1 cubic simple cycles with rotation number p/q, whose
fixed-point portraits are given by σ(1) = 0, 1, . . . , q. Only the pairs with
adjacent values of σ(1) are compatible.

00σ =

02

1211 22

01

Figure 3. Compatibility of degree 4 cycles of the form C(1/2, σ).

Degree d = 4. In the quartic case there are six cycles in C4(1/2), gen-
erated by t = p/15 with p = 1, 2, 3, 6, 7 and 11. The compatibility relation
between these cycles is shown in Figure 3. The 4 visible triangles give the 4
distinct triples of compatible simple cycles with rotation number 1/2. Note
that the modular group Mod4 ∼= Z/3 acts by rotations on this diagram.
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In general Cd(p/q) can be identified with the vertices of the q-fold barycen-
tric subdivision of a (d − 2)-simplex, with the top-dimensional cells corre-
sponding to maximal collections of compatible cycles.

σ  /  τ

210
0

3

2

1

C
64 53

Figure 4. The degree 5 simple cycle with rotation number 3/7 and σ = 013.

Sample computation in degree d = 5. To compute C(3/7, 013), we first
use equation (2.1) to compute the ‘transpose’ τ = 1223333 of σ = 013. Note
that the graphs of σ and τ , shown in white and black in Figure 4, fit together
to form a rectangle. Evaluating τ ′ = 1223444 along the sequence ipmod q,
i = 0, 1, 2, . . . we obtain the base 5 expansion t = 0.13424245 = 6966/19531
for a generator of C.

The cycle C, along with the 4 fixed points of p5, is drawn at the right in
Figure 4. Note that σ = 013 gives the running total of the number of points
of C in the first three quadrants.

Comparison with simple geodesics. The simple cycles for pd|S1 be-
have in many ways like simple closed geodesics on a compact hyperbolic
surface X = ∆/Γ of genus g, with compatible cycles corresponding to dis-
joint geodesics. For example, every maximal collection of disjoint simple
closed curves on X has 3g − 3 elements, just as every maximal collection of
compatible cycles for pd has d− 1 elements.

It is also known that the endpoints of lifts of simple geodesics lie in
a closed set E ⊂ S1 of Hausdorff dimension zero [BS]. The analogous
statement for simple cycles is:

Theorem 2.2 The closure E of the union of all simple cycles C ⊂ S1 of
degree d has Hausdorff dimension zero.

Proof. Let us say a finite set P ⊂ S1 is a precycle if it is the forward orbit of
preperiodic point x ∈ S1 under pd. We say P is simple, with rotation number
p/q, if pd|P extends to a continuous, monotone increasing map f : S1 → S1

with rotation number p/q. Then q ≤ n and the periodic part C of P is a
simple cycle.
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Let Pd(n, p/q) denote the set of all simple precycles of length n and
rotation number p/q. The argument that shows |Cd(p/q)| = O(qd−2) can be
adapted to show that |Pd(n, p/q)| = O(nd−2) as well.

Now fix N > 0. We claim that every x ∈ E lies within distance O(d−N )
of a simple precycle P with |P | ≤ N . To find this precycle, simply increase
x continuously until two of the points among x, f(x), . . . , fN (x) coincide.
This requires moving x only slightly, since |(fN )′(x)| = dN .

Thus E is contained in a neighborhood of diameter O(d−N ) of the union
EN of all simple precycles with |P | ≤ N . Since |EN | = O(Nd+2) grows only
like a polynomial in N , this implies dim(E) = 0.

Proof of Theorem 1.4. The Hölder continuous conjugacy φf between f
and pd preserves sets of Hausdorff dimension zero.

Remark: Invariant measures. The basic properties of simple cycles can
also be developed using the correspondence between invariant measures and
covering relations established in [Mc5]. For example, any union D =

⋃
Ci

of compatible cycles in Cd(p/q) arises as the support of an invariant measure
ν for pd|S1. Invariant measures, in turn, correspond bijectively to covering
relations (F, S) of degree d. In the case at hand, F (t) = t+ p/qmod1 and
S is a divisor on S1 of degree d − 1. By perturbing S so its points have
multiplicity one, we obtain a nearby invariant measure ν ′ whose support
D′ ⊃ D is a maximal union of exactly (d − 1) compatible cycles (property
(5) above).

The compactification of the space of Blaschke products by covering re-
lations (F, S) is discussed in the following section.

Question. Is there a useful notion of intersection number for a pair of
cycles?

3 Blaschke products

This section presents basic facts about marked Blaschke products, their
derivatives and their images in the moduli space of all rational maps. See
[Mc5] for related background material.

Blaschke products. Identify S1 = R/Z with the unit circle in the complex
plane, using the coordinate z = exp(2πit). Let ∆ = {z : |z| < 1} be the
unit disk, and ∆(n) its n-fold symmetric product.
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Given d > 1, let Bd
∼= ∆(d−1) denote the space of Blaschke products

f : ∆ → ∆ of the form

f(z) = z

d−1∏

1

(
z − ai
1− aiz

)

with ai ∈ ∆. Note that f extends to a rational map on the whole Riemann
sphere, and f |S1 is a covering map of degree d.

A proper holomorphic map g : ∆ → ∆ of degree d > 1 is conjugate to
some f ∈ Bd iff g has a fixed point.

Derivatives and measure. By logarithmic differentiation, any f ∈ Bd

satisfies

|f ′(z)| = 1 +
d−1∑

1

1− |ai|2
|z − ai|2

(3.1)

for z ∈ S1. In particular, f |S1 is expanding.
More importantly, f |S1 preserves normalized Lebesgue measure λ on the

circle; equivalently, f∗(dz/z) = dz/z, as can be verified by residue consider-
ations. This means ∑

f(w)=z

|f ′(w)|−1 = 1 (3.2)

for any z ∈ S1.

Markings. All f ∈ Bd are topologically conjugate to the model mapping
pd(z) = zd. A marking for f the choice of one such conjugacy, i.e. the choice
of a degree one homeomorphisms φ : S1 → S1 such that

f(z) = φ−1 ◦ pd ◦ φ(z).

There is a unique marking φf which varies continuously in f and satisfies
φf (z) = z when f = pd. Thus Bd can be regarded as the space of marked
Blaschke products.

The modular group Modd ∼= Z/(d− 1) acts on Bd by (ai) 7→ (ζai) where
ζd−1 = 1. Its orbits correspond to different markings of the same map. Thus
f1, f2 ∈ Bd are conformally conjugate on ∆ iff they are in the same orbit of
the modular group.

Lengths. The canonical marking allows one to label the cycles of f by the
cycles of pd. We define the length on f of a cycle C ∈ Cd of period q by

L(C, f) = log |(f q)′(z)|
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for any z ∈ S1 with φf (z) ∈ C.

Limits of lower degree. The space of Blaschke products has a natural

compactification Bd
∼= ∆

(d−1)
, whose boundary points (ai) can be inter-

preted as pairs (F, S) consisting of a Blaschke product

F (z) = z
∏

|ai|<1

(
z − ai
1− aiz

)
·
∏

|ai|=1

(−ai)

and a divisor of sources

S =
∑

|ai|=1

1 · ai ∈ Div(S1),

satisfying degF + degS = d. It is easy to see:

Proposition 3.1 A sequence fn ∈ Bd converges to (F, S) ∈ ∂Bd iff

(i) fn(z) → F (z) uniformly on compact subsets of Ĉ − suppS,
and
(ii) the zeros Z(fn) converge to Z(F ) + S as divisors on Ĉ.

More generally, the space Ratd of degree d rational maps f : Ĉ → Ĉ has
a compactification Ratd ∼= P2d+1, whose boundary points (F, S) are pairs
consisting of a rational map F and an effective divisor S ∈ Div(Ĉ) with
deg(F ) + deg(S) = d. We have fn → (F, S) in Ratd iff their graphs satisfy

gr(fn) → gr(F ) + S × Ĉ

as divisors of degree (1, d) on Ĉ× Ĉ (cf. [D, §1]).
Radial bounds on f ′(z). The following elementary observation is useful
for studying limits as above.

Proposition 3.2 For any proper holomorphic map f : ∆ → ∆ and ζ ∈ S1,
we have

sup
r∈[0,1]

|f ′(rζ)| ≤ 4|f ′(ζ)|.

Note that we do not require that f(0) = 0. This bound is sharp, as can be
seen by considering f(z) = (z + a)/(1 + az) as a → 1−.

Proof. We can write

f(z) = eiθ
d∏

1

Mi(z), (3.3)
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where Mi(z) = (z − ai)/(1 − aiz) and ai ∈ ∆. Composing with a rotation,
we can also assume that ζ = 1. For r ∈ [0, 1] we have

∣∣∣∣
M ′

i(r)

M ′
i(1)

∣∣∣∣ =
|1− ai|2
|1− rai|2

,

and therefore
|M ′

i(r)| ≤ 4|M ′
i(1)|,

since the distance from 1 to ai is never more than twice the distance from 1 to
rai, Differentiating the product (3.3) and using the fact that |∏j 6=iMj(r)| ≤
1, we obtain:

|f ′(r)| ≤
∑

|M ′
i(r)| ≤ 4

∑
|M ′

i(1)| = 4|f ′(1)|.

The last equality, like equation (3.1), is verified by logarithmic differentia-
tion.

Corollary 3.3 If fn → (F, S) ∈ Bd, zn ∈ S1, zn → z and |f ′
n(zn)| = O(1),

then lim fn(zn) = F (z).

Proof. Suppose sup |f ′
n(zn)| = M ; then for any r < 1 we have

lim sup |fn(zn)− F (z)| ≤ lim sup |fn(rzn)− F (z)| + 4M(1− r)

= |F (rz)− F (z)|+ 4M(1 − r);

now let r → 1.

Irrational rotations. As a sample application, we prove the following
result stated in the Introduction:

Corollary 3.4 If fn ∈ Bd satisfies f ′
n(0) → exp(2πiθ) where θ is irrational,

then L(C, fn) → ∞ for every cycle C.

Proof. Suppose to the contrary that L(C, fn) is bounded for some cycle
C. Let Cn ⊂ S1 be the corresponding periodic cycle for fn. Pass to a sub-
sequence such that fn → (F, S) ∈ ∂Bd and Cn → D ⊂ S1 in the Hausdorff
topology. Then F (z) = exp(2πiθ)z and by Corollary 3.3 we have F (D) = D,
contradicting the irrationality of θ.
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Variants. Here are two useful variants of the results above:

Proposition 3.5 For any proper holomorphic map f : H → H and x ∈ R,
we have

sup
y

|f ′(x+ iy)| ≤ f ′(x).

Proposition 3.6 Assume fn ∈ Ratd converges to (F, S) ∈ Ratd, zn → z,
and ‖Dfn(zn)‖ = O(1) in the spherical metric on Ĉ. Then we have

fn(zn) → F (z)

provided zn belongs to a circle Tn with f−1
n (Tn) = Tn, and infn diam(Tn) > 0.

Proofs. The first result follows directly from the representation f(z) =
a0z + b0 +

∑d−1
1 ai/(bi − z) with ai > 0 and bi ∈ R, and the second follows

by the same argument as Corollary 3.3.

The maps fn(z) = 1/(1 + nz2) satisfy f ′
n(0) = 0 and lim fn(0) = 1 6=

F (0) = 0; thus some extra hypothesis is needed to interchange limits as in
Proposition 3.6.

Moduli space of rational maps. Let MRatd = Ratd /Aut(Ĉ) denote the
moduli space of holomorphic conjugacy classes of rational maps of degree
d > 1. A pair of Blaschke products are conjugate iff they are related by the
modular group or by z 7→ 1/z; thus we have an inclusion

Bd/(Modd⋉Z/2) →֒ MRatd .

The next result shows this inclusion is almost proper.

Theorem 3.7 If fn → (F, S) ∈ ∂Bd but [fn] remains bounded in MRatd,
then F (z) = z and suppS is a single point. In particular, we have f ′

n(0) → 1.

Proof. Pass to a subsequence such [fn] → [g] ∈ MRatd and fn → (F, S) ∈
∂Bd. Then there are conjugates hn = AnfnA

−1
n → g. Since fn diverges

in Bd, An → ∞ in Aut(Ĉ). On the other hand, the measures of maximal
entropy satisfy µ(hn) → µ(g) and µ(fn) → µ(F, S), by [D, Thm. 0.1] (see
also [Mc5]). Since µ(g) is nonatomic, this implies µ(F, S) = limA∗

n(µ(hn))
is supported at a single point. But suppµ(F, S) is F -invariant and includes
suppS; thus F (z) = z and suppS = {s} is itself a single point.

Example. The sequence fn(z) = z(z + an)/(1 + anz), with an = 1 − 1/n,
is divergent in B2 but convergent in MRat2. To see this, normalize so the
origin is a critical point instead of a fixed point; then fn(z) is conjugate to
hn(z) = (z2 + bn)/(1 + bnz

2), and bn = an/(2 + an) → 1/3 as an → 1.
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4 The thin part of f(z)

Let us define the thin part of f ∈ Bd by

S1
thin(f) = {z ∈ S1 : |f ′(z)| < 2}.

In this section we will show:

Theorem 4.1 For any f ∈ Bd, the map f |S1
thin(f) extends to a degree one

homeomorphism of the circle.

Corollary 4.2 All cycles of f with L(C, f) < log 2 are simple and compat-
ible.

Visual angles. The derivative of

f(z) = z

d−1∏

1

(
z − ai
1− aiz

)

can be conveniently analyzed using the hyperbolic visual angle, defined for
a, z ∈ ∆ by

α(z, a) = 2 arg(z − a)− arg(z).

This is the angle at a of the hyperbolic geodesic az. For z ∈ S1 we have
arg(1− az) = arg(z)− arg(z − a), and thus

arg(f(z)) = arg(z) +
d−1∑

1

α(z, ai). (4.1)

(Note this simplifies to arg(f(z)) = 2 arg(z − a1) when d = 2.) Letting
θ = arg(z) and α̇ = dα/dθ, we then obtain:

|f ′(z)| = 1 +
d−1∑

1

α̇(z, ai) (4.2)

for z ∈ S1.

The visual density. The visual density α̇(z, a) is essentially the Poisson
kernel; for a = r ≥ 0 it is given by

α̇(z, r) =
1− r2

1 + r2 − 2r cos θ
, (4.3)

15



where θ = arg z. Geometrically, (α̇(z, a)/2π) dθ is the hitting measure on
the circle for a random hyperbolic geodesic starting at a.

For fixed z ∈ S1, the level sets of α̇(z, a) are horocycles resting on z.
Thus

J(a) = {z ∈ S1 : α̇(z, a) < 1}
is the large arc cut off by the chord perpendicular to 0a. This follows from
the fact that the horocycle resting on one of the endpoints of J(a) and
passing through 0 also passes through a (see Figure 5).

J(a)
0 a

Figure 5. The arc J(a) where α̇(z, a) < 1.

Proposition 4.3 The visual density α̇(z, a)|J(a) is strictly convex, and de-
creases as a moves radially towards the circle. In other words, we have

...
α(z, a) > 0 and

d

ds
α̇(z, sa)

∣∣∣∣
s=1

< 0

for all z ∈ J(a).

Proof. To verify convexity, consider the case where a = r ∈ [0, 1). By (4.3),
in this case we have α̇ = (1 − r2)/u where u = 1 + r2 − 2r cos θ. We may
assume θ ∈ (0, π). Cross-multiplying and differentiating, we obtain

α̇u = 1− r2,

α̈u+ α̇(2r sin θ) = 0, and
...
αu+ α̈(4r sin θ) + α̇(2r cos θ) = 0.

Since r, u and sin θ are all positive, we have α̇ > 0 and α̈ < 0. Comparing
the last two equations, we find the sign of

...
α is the same as the sign of the

determinant

D = det

(
2r sin θ u

2r cos θ 4r sin θ

)
= 8r2 sin2 θ − 2ru cos θ.
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We claim D > 0 when z ∈ J(r), i.e. when u = |z − r|2 > 1− r2. The claim
is evident if cos θ is negative, so assume θ ∈ (0, π/2); then

u = |z − r|2 ≤ |z − 1|2 ≤ 2(Im z)2 = 2 sin2 θ.

We also have cos θ = Re(z) < r for z ∈ J(r), and thus:

D ≥ 4r2u− 2r2u > 0.

The proof of the density decreasing property is straightforward.

Properties of the thin part of f . We can now show that f |S1
thin(f) acts

like a rotation. We first observe:

Proposition 4.4 For any f ∈ Bd,

(i) The map f |S1
thin(f) is injective,

(ii) We have S1
thin(f) ⊂

⋂
J(ai) ,

(iii) S1
thin(f) consists of at most (d− 1) disjoint open intervals, and

(iv) S1
thin(f) increases as the zeros ai of f move radially towards the circle.

Proof. If f(x1) = f(x2) for two distinct points in S1
thin(f), then |f ′(x1)|+

|f ′(x2)| > 1/2 + 1/2 = 1, which violates the measure-preserving property
(3.2) of f ; thus f |S1

thin(f) is injective. Equation (4.2) implies (ii). Since⋃
(S1 − J(ai)) has at most (d − 1) components, so does I =

⋂
J(ai). By

Proposition 4.3, |f ′(z)| is locally convex on I; thus the intersection of S1
thin(f)

with any component of I is connected, and (iii) follows. The density decreas-
ing property stated in Proposition 4.3 implies (iv).

Proof of Theorem 4.1. By moving the points (ai) radially to the circle,
we obtain a smooth 1-parameter family of maps ft ∈ Bd, t ∈ [0, 1], with
f0 = f and f1 = (F, S). Since deg(S) = d− 1, we have deg(F ) = 1. Propo-
sition 4.4 implies that ft|Tt = S1

thin(ft) is injective, Ts ⊂ Tt when s < t, and
suppS ∩ Tt = ∅. Thus for any three distinct points xi ∈ S1

thin(f), the triple
(ft(x1), ft(x2), ft(x3)) moves by isotopy as t increases from 0 to 1, and con-
verges to F (x1), F (x2), F (x3)) as t → 1. Since F is a rotation, it preserves
the cyclic ordering of the points (xi), so the same is true of f . Consequently
f extends from S1

thin(f) to an orientation-preserving homeomorphism of the
circle.
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5 Bounds on repelling cycles

In this section we show that every f ∈ Bd has a simple cycle with L(C, f) =
O(d), and obtain related results for general rational maps.

Moduli and tori. We begin by summarizing some well-known facts about
extremal length on tori.

Any point τ ∈ H determines a complex torus

Xτ = C/(Z ⊕ Zτ)

with a flat metric inherited from the plane, and a distinguished basis 〈1, τ〉
for its fundamental group. Factoring the covering map C → Xτ through the
map ξ : C → C∗ ∼= C/Z given by ξ(z) = exp(2πiz), we have

Xτ = C∗/αZ

where α = ξ(τ) satisfies 0 < |α| < 1. The same construction can be made
when −τ ∈ H; then |α| > 1.

Given a slope p/q ∈ Q ∪ {∞}, let γp/q ⊂ Xτ denote the simple closed
geodesic obtained as the projection of the line R · (τ − p/q) from C to Xτ .
Its preimage γ̃p/q in the intermediate cover C∗ consists of q arcs joining 0 to
∞, cyclically permuted with rotation number p/q by z 7→ αz.

Any annulus A is conformally equivalent to a right cylinder, which is
unique up to scale. The ratio mod(A) = h/c between the height and cir-
cumference of this cylinder is the modulus of A.

The maximum modulus of an annulus A ⊂ Xτ homotopic to γp/q is given
by

mod(p/q,Xτ ) =
area(Xτ )

L(γp/q,Xτ )2
=

| Im τ |
|qτ − p|2 (5.1)

(assuming gcd(p, q) = 1). This maximum is realized by taking A = Xτ\γp/q.
The set of τ ∈ H with mod(p/q,Xτ ) ≥ m is a horoball of diameter 1/(mq2)
resting on the real axis at p/q. For p/q = 1/0 we have

mod(∞,Xτ ) = | Im τ |.

The intersection inequality

mod(p/q,Xτ )mod(r/s,Xτ ) ≤
(
det

(
p q

r s

))−2

(5.2)

is easily verified by considering the determinant of the lattice Z(qτ − p) ⊕
Z(sτ − r). This inequality implies:
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There is at most one slope with mod(p/q,Xτ ) > 1.

On the other hand we have:

Proposition 5.1 For any τ ∈ H, there exists a slope p/q ∈ Q ∪ {∞} such
that

mod(p/q,Xτ ) ≥
√
3/2.

Proof. Since the statement is invariant under the action of SL2(Z) on
H, it suffices to verify it when τ lies in the fundamental domain |τ | ≥ 1,
|Re τ | ≤ 1/2; and in this case, we have mod(∞,Xτ ) = Im τ ≥

√
3/2.

Rational maps. Now let f : Ĉ → Ĉ be a rational map of degree d > 1.
If z ∈ Ĉ is a point of period q, its multiplier is given by β = (f q)′(z). The
grand orbit of z is the set

⋃
i,j>0 f

−i ◦ f j(z).
Suppose f has a fixed point at z = 0 and a periodic point w 6= 0 with

period q. We say w has rotation number p/q relative to z = 0 if there are
arcs (δi)

q−1
0 ⊂ Ĉ joining z = 0 to f i(w), meeting only at z = 0, which are

cyclically permuted by f with rotation number p/q.

Theorem 5.2 Let f be a rational map with an attracting fixed-point at
z = 0, with multiplier

α = f ′(0) = exp(2πiτ) 6= 0.

Let e be the number of grand orbits of critical points in the immediate basin
Ω of z = 0. Then for each p/q ∈ Q, there exists a repelling or parabolic
periodic point w ∈ ∂Ω such that:

1. The rotation number of w relative to z = 0 is p/q; and

2. Its multiplier has the form β = (f q)′(w) = exp(−2πiσ), where σ = 0
or

Imσ

|σ|2 ≥ mod(p/q,Xτ )

e
· (5.3)

In particular, we have

|β| ≤
(
exp

(
2π

mod(p/q,Xτ )

))e

· (5.4)
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Proof. Let Ω∗ denote the immediate basin of z = 0 with the grand orbits of
all critical points in Ω and of z = 0 deleted. Then f : Ω∗ → Ω∗ is a covering
map. Moreover, the holomorphic linearizing map

φ(z) = limα−nfn(z)

is defined for all z ∈ Ω∗, and satisfies φ(f(z)) = αf(z). Consequently φ
descends to an inclusion of the space of grand orbits Y = Ω∗/〈f〉 into the
torus Xτ = C∗/αZ, making the diagram

Ω
φ−−−−→ C∗

y
y

Ω/〈f〉 = Y →֒ Xτ = C∗/αZ

commute. By assumption we have |Y −Xτ | = e.
For a given p/q ∈ Q, the geodesics parallel to γp/q passing through the

punctures of Y cut it into ≤ e parallel annuli, one of which satisfies

mod(A) ≥ mod(p/q,Xτ )/e. (5.5)

Let δ ⊂ A be the core curve of A, and δ0 ⊂ Ω∗ one of its lifts which is
incident to z = 0. Let δi = f i(δ0). By construction, the arc δ0 is invariant
under f q, and f q|δ0 is a bounded translation in the hyperbolic metric on
Ω∗. Consequently δ0 must join z = 0 to another fixed point w of f q in ∂Ω.
By the Snail Lemma [Mil1, Lem. 16.2], w is repelling or parabolic.

We have seen that the preimage of γp/q on C∗ consists of q arcs, cyclically
permuted with rotation number p/q by z 7→ αz. Since φ is a homeomorphism
near z = 0, the arcs δ0, . . . , δq−1 are also cyclically permuted with rotation
number p/q by f . In particular w has rotation number p/q relative to z = 0.

Now suppose w is repelling, with multiplier β. Choose an injective
branch of f−q defined on a punctured neighborhood U∗ of w such that
f−q : U∗ → U∗ and

Z = U∗/〈f−q〉 ∼= C∗/βZ = Xσ,

where σ = log(β/2πi). There is a unique choice of the logarithm such that
the invariant arc δ0 ∩ U∗ descends to a loop isotopic to γ0 on Xσ.

By construction, A ⊂ Y is covered by a strip A0 ⊂ Ω∗ which retracts to
δ0, and hence we have an inclusion

A ∼= A0/〈f q〉 →֒ Z ∼= Xσ
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in the same homotopy class as γ0. This implies

mod(0,Xσ) ≥ mod(A),

and the bound (5.3) follows from equations (5.1) and (5.5).

Corollary 5.3 If f ∈ Ratd has an attracting fixed point with multiplier
satisfying

|α| > exp(−π
√
3) = 0.0043 . . .

then it also has a repelling or parabolic cycle with multiplier satisfying

|β| ≤ exp(4π/
√
3)2d−2 ≤ 14162d−2.

Proof. The lower bound on |α| implies Im(τ) = mod(∞,Xτ ) <
√
3/2,

where τ = (log α)/2πi. Hence mod(p/q,Xτ ) ≥
√
3/2 for some p/q ∈ Q, by

Proposition 5.1. Now apply equation (5.4) and note that e ≤ 2d− 2.

Corollary 5.4 If a map f ∈ Ratd has an attracting fixed point with multi-
plier α, then it also has a repelling or parabolic cycle with multiplier satis-
fying

|β| ≤
(
exp(4π/

√
3)/|α|

)2d−2
.

Proof. Choose τ = (log α)/2πi = x+iy with x ∈ [−1/2, 1/2]. The previous
corollary shows the desired bound holds when y <

√
3/2. For y ≥

√
3/2 we

have

m = mod(0,Xτ )
−1 ≤ x2 + y2

y
≤ 1

2
√
3
+ y <

2√
3
+ y,

which implies exp(2π/m) ≤ exp(4π/
√
3)/|α|; thus by (5.4) the desired

bound holds in this case as well.

The bottom of the spectrum. Here is a qualitative consequence of the
preceding corollary.

Let the spectrum S(f) ⊂ C be the set of all multipliers β that arise from
periodic points of f ∈ Ratd, and let

L(f) = inf{log |β| : β ∈ S(f) and |β| ≥ 1}.
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By the fixed-point formula for rational maps [Mil1, Thm. 12.4], the multi-
pliers of f at its fixed points satisfy

∑ 1

µj − 1
= 1, (5.6)

provided no µj = 1; in particular, |µj| ≤ d+ 1 for some j. Thus if f has no
attracting fixed points, it satisfies

L(f) ≤ log(d+ 1).

Combining this observation with Corollary 5.4, we obtain:

Corollary 5.5 Let fn ∈ Ratd be a sequence of rational maps with L(fn) →
∞. Then the maps fn have fixed points with multipliers αn → 0.

Examples. It is easy to see that fn(z) = z2 + n2 satisfies L(fn) → ∞ as
n → ∞, since its Julia set lies close to ±n. Of course fn has a fixed point
at infinity with multiplier αn = 0.

Parabolics must be included in the definition of L(f) to obtain Corollary
5.5. In fact, if we let L∗(f) = inf{log |β| : β ∈ S(f), |β| > 1}, then fn(z) =
z − 1/z + n satisfies L∗(fn) → ∞ even though fn has no attracting fixed
point. (The map fn(z) behaves like the Hecke group 〈z 7→ −1/z, z 7→ z+n〉;
cf. [Mc3, Thm 6.2].)

Question. Does Corollary 5.5 remain true if only parabolic and repelling
multipliers are included in the definition of L(f)?

Blaschke products. We now return to the setting of a proper map f :
∆ → ∆ fixing z = 0. In this case formula (5.6) implies:

Proposition 5.6 The multipliers (λi)
d−1
1 of f ∈ Bd at its fixed points on

the circle satisfy
d−1∑

1

1

λi − 1
=

1− |α|2
|1− α|2 ,

where α = f ′(0).

Corollary 5.7 If |α| < 1/2, then f has a repelling fixed point with multiplier
satisfying 1 < β ≤ 1 + (d− 1)/3.

Theorem 5.8 Every f ∈ Bd has a simple cycle with L(C, f) = O(d).

Proof. Combine Corollaries 5.4 and 5.7.
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6 Short cycles and short geodesics

In this section we use the fixed-point formula for rational maps to obtain
the following more detailed connection between the short cycles for f and
the short geodesics on its quotient torus.

Theorem 6.1 Given f ∈ Bd with f ′(0) = exp(2πiτ), choose p/q ∈ Q to
maximize mod(p/q,Xτ ). Then there exist compatible simple cycles Ci with
rotation number p/q, such that:

1. Their lengths satisfy

mod(p/q,Xτ ) ≤ π
∑

L(Ci, f)
−1 ≤ mod(p/q,Xτ ) +O(d); (6.1)

2. All other cycles satisfy L(C, f) > ǫd > 0; and

3. For any r > 0, the multipliers of f r at its repelling fixed points satisfy

1

r

∑′ 1

λj − 1
= O(d), (6.2)

where the prime indicates that fixed points in
⋃

Ci are excluded.

In qualitative terms, the construction shows:

Corollary 6.2 All cycles with L(C, f) < ǫd arise from short geodesics on
the quotient torus for f .

Tiling of ∆∗. The slope p/qmod1 appearing in the Theorem above de-
pends only on α = f ′(0) ∈ ∆∗. Figure 1 of the Introduction shows the re-
gions T (p/q) ⊂ ∆∗ where a given slope maximizes the value of mod(p/q,Xτ ) =
mod(p/q,C/αZ).

This picture is nothing more than the image, under the covering map
ξ : H → ∆∗ given by ξ(τ) = exp(2πiτ), of the tiling of H by SL2(Z) translates
of the Dirichlet region

F = {τ ∈ H : |τ − n| ≥ 1 ∀n ∈ Z}

for the cusp τ = ∞. The tile T (∞) = ξ(F ) lies in a ball of radius
exp(−π

√
3) ≈ 1/230 about the origin. In this tile the short curve is γ∞ ⊂

Xτ , which lifts to a loop around z = 0 rather than a path connecting z = 0
to a periodic point. Thus the length of γ∞ can go to zero without any cycle
getting short.
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Each remaining tile T (p/q) contains a horocycle H resting on the root
of unity exp(2πip/q) ∈ S1. Within a still smaller horocycle H ′ ⊂ H, γp/q
becomes very short, and hence f has a very short cycle with rotation number
p/q.

Moduli and multipliers. We begin the proof of Theorem 6.1 by connect-
ing Diophantine properties of α ∈ ∆∗ to lengths of geodesics on C∗/αZ.

Lemma 6.3 For any α = exp(2πiτ) ∈ ∆∗ and q > 0, we have

sup
p

mod(p/q,Xτ )

gcd(p, q)2
=

π

q

1− |αq|2
|1− αq|2 +O(1).

Proof. First consider the case q = 1, and assume τ is chosen so |Re τ | ≤
1/2. Then we have 2πiτ ≈ 1− α when either side is small, and hence

sup
p

mod(p,Xτ ) =
Im τ

|τ |2 = π
1− |α|2
|1− α|2 +O(1).

The general case follows using the fact that

mod(p/q,Xτ )

gcd(p, q)2
=

mod(p,Xqτ )

q
.

Proof of Theorem 6.1. Choose p so that mod(p/q,Xτ ) is maximized. As
in Theorem 5.2, by cutting the torus Xτ open along e ≤ d − 1 geodesics
parallel to γp/q we obtain annuli A1, . . . , Ae ⊂ Y with

mod(p/q,Xτ ) =
∑

mod(Ai).

Each annulus Ai, when lifted to the unit disk, connects z = 0 to a simple
cycle Ci for f with rotation number p/q and multiplier βi > 1.

The lifts of the annuli Ai are disjoint, so the cycles Ci are compatible.
Assume for the moment they are also distinct. Since two copies of Ai embed
in the quotient torus C∗/βZ

i (one for the inside of the disk and one for the
outside), we have

2mod(Ai) ≤
2π

log βi
=

2π

L(Ci, f)
·

The combination of these inequalities yields:

mod(p/q,Xτ ) ≤ π
∑

L(Ci, f)
−1.
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This lower bound also holds when the cycles are not distinct; then we simply
have more annuli Ai embedded in a given torus C∗/βZ

j .
For the upper bound, let (λj) denote the multipliers of the repelling fixed

points of f q. Note that each cycle Ci contributes q fixed points, each with
multiplier βi. Combining Proposition 5.6 and Lemma 6.3, we obtain:

1

q

∑ 1

λj − 1
=

1

q

∑′ 1

λj − 1
+
∑ 1

βi − 1
=

1− |αq|2
q|1− αq|2

= π−1mod(p/q,Xτ ) +O(1).

(Again, the prime indicates fixed points in
⋃

Ci are excluded.) Since the
cycles Ci are compatible, there are no more than d− 1 of them, and hence

∑ 1

βi − 1
=
∑(

1

log βi
+O(1)

)
=
(∑

L(Ci)
−1
)
+O(d).

This yields the upper bound in (6.1); and it also implies

1

q

∑′ 1

λj − 1
= O(d).

That is, equation (6.2) holds for r = q.
To obtain (6.2) for other values of r, recall that by (5.2) we have mod(s/r,Xτ ) <

1 whenever s/r 6= p/q. Thus if q does not divide r, Lemma 6.3 implies

1

r

∑′
(λj − 1)−1 ≤ 1− |αr|2

r|1− αr|2 ≤ sup
s

mod(s/r,Xτ ) +O(1) = O(1);

while for r = nq we obtain

1

r

∑′ 1

λj − 1
+

q

r

∑ 1

βn
i − 1

=
1− |αr|2
r|1− αr|2 =

mod(p/q,Xτ )

πn2
+O(1),

which again implies (6.2), since (6.1) gives

q

r

∑ 1

βn
i − 1

=
1

n

(∑ 1

nL(Ci, f)
+O(1)

)
=

mod(p/q,Xτ )

πn2
+O(d).

Finally note that equation (6.2) implies L(C, f) > ǫd ≍ 1/d > 0, since
any cycle C of period r and multiplier β, not among the Ci, contributes

1/(β − 1) to the sum (1/r)
∑′

(λj − 1)−1.
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7 Binding and renormalization

We conclude by proving the following compactness result.

Theorem 7.1 Let (Ci)
n
1 be a binding set of cycles of degree d. Then for any

M > 0, the set of f ∈ Bd such that
∑

i L(Ci, f) ≤ M has compact closure
in MRatd.

Corollary 7.2 The set of f ∈ Bd such that
∑

i L(Ci, f) ≤ M and
|f ′(0) − 1| ≥ 1/M is compact.

Proof. By Theorem 3.7, the only way a sequence fn can diverge in Bd but
remain bounded in MRatd is if f ′

n(0) → 1.

Definitions. Sets A,B ⊂ S1 are unlinked if they lie in disjoint connected
sets; equivalently, if their convex hulls in the unit disk are disjoint. A map
f : X → X with X ⊂ S1 is renormalizable if there is a nontrivial partition
of X into disjoint, unlinked subsets X1, . . . ,Xn, such that every f(Xi) lies
in some Xj .

We say a collection of degree d cycles C1, . . . , Cm is binding if deg(pd|
⋃

Ci) =
d and pd|

⋃
Ci is not renormalizable.

Proof of Theorem 7.1. Suppose to the contrary that we have a sequence
fn ∈ Bd with

∑
i L(Ci, fn) ≤ M that is divergent in moduli space. Let

Dn = φ−1
fn

(⋃
Ci

)
⊂ S1

be the finite fn-invariant set corresponding to the binding cycles. Since
fn|S1 is expanding, we have |f ′

n| ≤ eM on Dn.
Next we conjugate the entire picture by an affine transformation depend-

ing on n, so that 0 ∈ Dn and diam(Dn) = 1. Then S1 goes over to a circle
Tn ⊃ Dn invariant by fn, and we still have |f ′

n|Dn| ≤ eM .
Pass to a subsequence such that fn → (F, S) ∈ Ratd. Since fn diverges

in MRatd, we have deg(F ) < d. Passing to a further subsequence, we can
find a finite set D containing zero and a circle T ⊂ Ĉ such that Dn → D and
Tn → T in the Hausdorff topology. Note that |D| > 1 since diamD = 1.

By Proposition 3.6, the map fn|Dn converges to F |D. But if |D| =
|⋃Ci|, the map F |(D ⊂ T ) is combinatorially the same as pd|(

⋃
Ci ⊂ S1),

contradicting our assumption that deg(pd|
⋃

Ci) = d. Similarly, if |D| <
|⋃Ci|, then the collapse of Dn to D provides an invariant partition for⋃

Ci, contradicting our assumption that pd|
⋃

Ci is not renormalizable.
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Examples. The single cycle C = (3, 6, 12, 24, 17)/31 in degree 2 is already
binding, as is any cycle of prime order with deg(pd|C) = d.

The first renormalizable cycle in degree 2 is C = (1, 2, 4, 3)/5. Although
deg(p2|C) = 2, L(C, fn) remains bounded as fn ∈ B2 diverges along the
sequence specified by f ′

n(0) = −1 + 1/n. Indeed, f2
n can be renormalized so

that C converges to the cycle of period 2 for G(z) = z − 1/z [Ep]; and thus
L(C, fn) → log 9. For more details, see [Mc6, §14].
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