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1 Dynamics on P1 and the theory of equations

1.1 Tools

Lebesgue density. Let E ⊂ Rn be a measurable set. Then for almost
every x ∈ Rn we have

lim
r→0

m(B(x, r) ∩ E)

m(B(x, r))
= χE(x).

Schwarz lemma. A Riemann surface X is hyperbolic if its universal cover
is isomorphic to H. In this case the conformal metric |dz|/y of constant
curvature −1 descends to give the complete hyperbolic metric on X.

Every holomorphic map f : X → Y between hyperbolic Riemann surface
is non-expanding for the respective hyperbolic metrics: we have d(f(x), f(x′)) ≤
d(x, x′), and ‖Df‖ ≤ 1. Moreover the following are equivalent:

• f is a covering map;

• f is a local isometry; and

• ‖Dfx‖ = 1 for some x ∈ X.

In particular, any proper inclusion X →֒ Y is a contraction.

Koebe distortion. The space of univalent or schlicht functions is given
by:

S =

{
f : ∆ → C : f(z) = z +

∞∑

2

anz
n

}
.

It is given the topology of uniform convergence on compact sets. Many
results flow from the basic fact that S is compact. For example if |z| ≤ r < 1
then we have:

K−1
r ≤ |f ′(z)| ≤ Kr

for all f ∈ S, where Kr → 1 as r → 0. This implies that f distorts the
density of a set E ⊂ ∆r by only a bounded amount.

One of the strongest forms of this compactness is the Bieberbach conjec-
ture, proved by de Branges: we have |an| ≤ n.
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1.2 Dynamics of rational maps

In one complex dimension, the behavior of an iterated rational map f : Ĉ →
Ĉ of degree d > 1 is controlled by its 2d− 2 critical points. A basic feature
of this control is the following result.

An attracting cycle is a collection of points (a1, · · · , an) cyclically per-
muted by f , such that |(fn)′(a1)| < 1. Any such cycle evidently attracts an
open set of Ĉ.

Theorem 1.1 Any attracting cycle of f attracts a critical point of f .

Proof. Replacing f with fn, we can assume the attracting cycle consists of
a single point a ∈ Ĉ. Let U ⊂ Ĉ be the open set of all points attracted to
a, and U0 the component of U containing a. Then f : U0 → U0 is a proper
map. If U0 contains no critical points, then f |U0 is also a covering map, and
hence an isometry for the hyperbolic metric. This contradicts the fact that
|f ′(z)| < 1.

(Note: we have tacitly assumed that Ĉ − U0 contains 3 or more points
so the hyperbolic metric is defined. In the other cases, U0 is isomorphic to
Ĉ, C or C∗, and self-coverings of these spaces are easily analyzed.)

Corollary 1.2 A rational map of degree d on P1 has at most 2d−2 attract-
ing cycles.

The attractor of f . Let A(f) denote the union of the attracting cycles
for f . By the results above, A(f) is a finite set. We wish to determine
conditions under which most points on Ĉ converge to A(f).

The Fatou and Julia sets. The Fatou set Ω(f) is the largest open set on
which the set of iterates F = {f, f2, f3, . . .} form a normal family. (This
means that for any compact set K ⊂ Ω(f), any sequence in F|K has a
uniformly convergent subsequence.)

The complement of the Fatou set is the Julia set J(f). By definition,
J(f) is a closed, f -invariant set (the forward and backward orbit of any
z ∈ J(f) is also contained in J(f)). It is known that J(f) is perfect, that
repelling periodic points are dense in J(f), and that J(f) is either the whole
sphere or its interior is empty.

Expanding dynamics. The next result shows that the behavior of the
critical points of f controls the behavior of most points on the sphere. We say
a rational map is hyperbolic, or expanding, if all its critical points converge
to attracting cycles.
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Theorem 1.3 If f is hyperbolic, then:

• The Julia set J(f) has measure zero,

• All z 6∈ J(f) converge to attracting cycles, and

• There is a smooth metric defined near J(f) with respect to which
‖f ′(z)‖ > 1 for all z ∈ J(f).

Proof. Let B ⊃ A(f) be a union of closed balls around the attracting cycles
such that f(B) ⊂ int(B). Replacing B by f−n(B) for n large enough, we
can assume B contains all the critical points of f .

Now let V = Ĉ − B and U = f−1(V ). Then we have U ⊂ V and
f : U → V is a covering map. By a Schwarz Lemma argument, for all z ∈ U
we have ‖f ′(z)‖ > 1 in the hyperbolic metric on U .

Let R =
⋂
f−n(U) be the set of points that never escape from U . Clearly

R consists exactly of the points in Ĉ that do not converge to A(f). But
‖(fn)′z‖ → ∞ for all z ∈ R, and therefore R = J(f).

To see J(f) has measure zero, use the expansion of f and Koebe distor-
tion to blow up any point of Lebesgue density to definite size, contradicting
the fact that J(f) is nowhere dense.

A useful generalization of the result above, that can be proved using
orbifolds, is:

Theorem 1.4 Suppose all critical points of f are either pre-periodic or con-
verge to the set of attracting cycles A(f). Then either:

• J(f) = Ĉ and A(f) is empty; or

• J(f) has measure zero, and fn(z) → A(f) for all z 6∈ J(f).

1.3 Rigidity

Dynamics from complex tori. Let E = C/Λ be a Riemann surface of
genus 1, and let F : E → E be the endomorphism given by F (z) = nz,
n > 1. The Weierstrass ℘-function provides a natural degree two map
℘ : E → Ĉ, whose fibers have the form {z,−z}. Since F (−z) = −F (z),
there is a rational map f making the diagram

E
F−−−−→ E

I℘

y I℘

y

Ĉ
f−−−−→ Ĉ
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commute. It is easy to see J(f) = Ĉ. These are among the simplest examples
of rational maps with Julia set the whole sphere.

When f arises via the construction above, we say f is covered by integral
multiplication on a torus.

Let V be an irreducible algebraic variety. An algebraic family of rational
maps over V is given by a map f : V → Ratk, sending a generic λ ∈ V to
the rational map fλ(z). The family has bifurcations if for any n, there is
an fλ(z) with an attracting cycle of period greater than n. Otherwise the
family is stable.

Theorem 1.5 Let fλ(z) be an algebraic family of rational maps. Then
either:

• There is a fixed rational map g(z) to which every fλ(z) is conformally
conjugate; or

• Every member is covered by integral multiplication on a complex torus
(whose modulus varies in the family); or

• The family has bifurcations.

We refer to this result as rigidity of stable algebraic families; the rigidity
meaning the family is essentially constant once it is stable.

A proof can be found in [Mc1]. As a plausibility argument, suppose fλ(z)
has no bifurcations. Then there is an N independent of λ such that all points
zλ with period n ≥ N are repelling. That is, the multiplier mλ = (fnλ )

′(zλ)
satisfies |mλ| > 1. Using the fact that bounded holomorphic functions (such
as 1/mλ) on V are constant, one can conclude that the multipliers at all
points of high period are constant in the family. A little extra argument
shows all multipliers are constant, independent of the period.

It is plausible that the multipliers serve as local moduli for rational maps
up to conformal conjugacy. This turns out to be true, except in the case of
the torus construction: there the multipliers stay constant as the modulus
of the torus varies.

1.4 Newton’s method

One of the classical interactions between algebra and dynamics is the prob-
lem of locating the roots of a polynomial p(z) ∈ C[z].

Newton’s method. Newton’s method provides an iteration scheme z 7→
f(z) for improving a guess for a root of p(z). The value f(z0) is simply
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the zero of the linear approximation p(z) = p(z0) + p′(z0)(z − z0); that is,
Newton’s method is given by

f(z) = z − p(z)

p′(z)
·

This method is generally convergent for p if

fn(z) → [a root of p]

for all z in an open, dense, full measure subset of the Riemann sphere Ĉ =
C ∪ {∞}.

How can we determine the global behavior of a rational map such as
Newton’s method?

Theorem 1.6 Newton’s method is generally convergent for a polynomial
p(z) provided the points of inflection of p(z) are pre-periodic or converge to
roots of p.

Proof. Since f ′(z) = p(z)p′′(z)/p′(z)2, the zeros of p′′(z), together with
the zeros of p(z), comprise the critical points of Newton’s method. So this
result follows from Theorem 1.4.

Computing nth roots. For the special case p(z) = z2 − a, Newton’s
method gives the classical averaging method for computing square roots:
f(z) = (z + a/z)/2. For p(z) = zd − a we get a weighted average:

f(z) =

(
1− 1

d

)
z +

1

d

( a

zd−1

)
·

Corollary 1.7 Newton’s method is a reliable technique for extracting radi-
cals.

Proof. For degree d = 2 there are no points of inflection, while for d ≥ 3
the only point of inflection of p(z) = zd − a is z = 0, which lands on the
fixed point z = ∞ after one iteration.
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Success and failure of Newton’s method. Let Polyd
∼= Cd denote the

space of monic polynomials of degree d, and Ratk ∼= P2k+1 the space of
rational maps f : Ĉ → Ĉ of degree k.

A purely iterative algorithm is a rational map T : Polyd → Ratk, assign-
ing to a polynomial p a rational Tp(z) computed from the coefficients of p.
The algorithm is generally convergent if

T n
p (z) → [a root of p]

for all (p, z) in an open, dense, full-measure subset of Polyd×Ĉ.

Theorem 1.8 Newton’s method is generally convergent for degree d = 2 but
not for degree d ≥ 3.

Proof. A degree two polynomial has no points of inflection, so Newton’s
method is generally convergent.

For degree three, consider the polynomial p(z) = 4z3 − 2z + 1; it has
a point of inflection at z = 0. Newton’s method for p is given by f(z) =
(8z3 − 1)/(16z2 − 2). We have f(0) = 1/2 and f(1/2) = 0, so f has a
superattracting cycle of order 2. The basin of this cycle consists of initial
guesses that do not converge to roots of p, and thus f fails to be generally
convergent for this particular p. By transversality, the attracting cycle of
period two persists under a small perturbation of p, and thus Newton’s
method in degree 3 fails on an open set in Poly3 ×Ĉ. Therefore it is not
generally convergent.

It is immediate the Newton’s method fails to be generally convergent
in higher degrees as well, by considering polynomials of the form p(z) =
4z3 − 2z + 1 + ǫzd.

1.5 Inventing algorithms

Quadratics. Here is a pure-thought approach to constructing a generally
convergent algorithm to solve quadratic polynomials.

Let p(z) = (z − a)(z − b). We would like to construct a rational map
Tp(z) whose attractor coincides with the roots {a, b} of p.

Now a simple example of a rational map whose attractor consists of two
fixed points is f(z) = z2. For this map, we have

fn(z) →
{
0 if |z| < 1, and

∞ if |z| > 1;
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Figure 1. Newton’s method for 4z3 − 2z + 1.

the circle S1 = {z : |z| = 1} is invariant and coincides with the Julia set of
f .

Suppose we construct Tp(z) by conjugating f so its attractor {0,∞} is
sent to the roots {a, b} of p. More precisely, let Tp =MfM−1, where M(z)
is the unique Möbius transformation sending {0,∞, 1} to {a, b,∞}. Then
clearly A(Tp) = {a, b}, and T n

p (z) tends to a root of p for all z outside
M(S1). Thus Tp is a reliable algorithm for finding the roots of p.

The only potential problem with this algorithm is that to compute Tp by
the prescription above, we already need to know the roots of p. But notice
that f(z) is symmetric with respect to the symmetry z 7→ 1/z interchanging
its attracting fixed points. Because of this symmetry, we obtain the same
result for Tp if we interchange the order of the roots a and b for p. Thus Tp
only depends on symmetric functions of the roots, and hence it is a rational
function of the coefficients of p.

Thus Tp gives a purely iterative algorithm, and by construction it is
generally convergent.

In fact this algorithm coincides with Newton’s method for quadratics.

Cubics. Now let us undertake a similar program for cubics. To do this, we
need to find a rational map f whose attractor A(f) consists of three points
— say the cube roots of unity, {1, ω, ω2}, where ω = exp(2πi/3). Moreover,
we would like f to be symmetric with respect to permutations S3 of A(f).
That is, we would like to have f(1/z) = 1/f(z) and f(ωz) = ωf(z).
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By a direct calculation, it is easy to see that maps of the form

f(z) =
z4 + az

az3 + 1

have the desired symmetries. This map fixes the cube roots of unity. We
have f ′(1) = (4−2a)/(1+a); the derivative at the other cube roots of unity
is the same, by symmetry.

Now set a = 2; then f ′(1) = 0, so each cube root of unity is a super-
attracting fixed point for f . Moreover f ′′(1) = 0 as well, so the six critical
points of f coincide with the cube roots of unity — each has multiplicity
two. It follows that J(f) has measure zero, and all points outside J(f)
converge under iteration to a root of z3 − 1.

As in the quadratic case, we can now define Tp = MfM−1, where M
is a Möbius transformation sending the roots of z3 − 1 to the roots of p(z).
Although there are 6 choices for M , they all give the same map Tp, because
of the symmetries of f . Thus Tp is a rational function of the coefficients of
p, and we have shown:

Theorem 1.9 There exists a generally convergent algorithm for solving cu-
bic equations.

Quartics. The symmetry construction breaks down for polynomials of
degree d = 4. Since the cross-ratio varies, there is generally no Möbius
transformation sending the roots of p to the roots of q for p, q ∈ Poly4.
On the other hand, the rigidity of stable algebraic families can be used to
show that any successful purely iterative algorithm must be based on the
symmetry construction. Thus we have:

Theorem 1.10 There is no generally convergent purely iterative algorithm
for solving polynomials of degree d ≥ 4.

1.6 Quintic polynomials: classical theory

To proceed to polynomials of still higher degree, we first recall the classical
solution to the quintic equation via the icosahedron and modular functions.

Reduction to the icosahedron. Let s : C5 → C5 be the map sending
(r1, . . . , r5) to the coefficients (a1, . . . , a5) of the polynomial

p(z) =

5∏

1

(z − ri) = z5 + a1z
4 + a2z

3 + a3z
2 + a4z + a5.

8



This maps gives the quotient of C5 under the action of S5 permuting coor-
dinates.

Passing to projective space, we obtain an action of S5 on P4. By a change
of variable of the form z 7→ z + a, we can arrange that a1 = −∑ ri = 0.
The set of roots normalized so

∑
ri = 0 forms an S5-invariant hyperplane

P3 ⊂ P4.
After a further change of variable of the form z 7→ z2 + az + b – known

as a Tschirnhaus transformation – we can normalize our polynomial so that
a2 = 0 as well. In terms of roots, we have now further restricted to the
quadric Q ⊂ P3 defined by

∑
r2i = 0.

The smooth quadric surface Q admits a pair of rulings that are inter-
changed by the odd elements of S5. Note that Q/S5 is isomorphic to the
weighted projective space of quintics normalized so that a1 = a2 = 0.

Now we extract the square-root of the discriminant of p(z). This results
in the reduction of the Galois group from S5 to A5, the subgroup that
preserves the rulings. (Geometrically, the pullback of Q splits into two
components.)

Now the original polynomial p determines 60 points on the quadric Q,
and hence 60 lines ℓi in one of the rulings. (Each line corresponds to an
even reordering of the roots (ri).) The space of all lines in a given ruling
is isomorphic to P1. From p we can determine the common image q of the
ℓi ∈ P1 in the quotient space P1/A5

∼= P1.
Thus, if we can invert the degree 60 icosahedral map,

f : P1 → P1/A5
∼= P1,

we can solve the original polynomial p. (Once the equation for a specific
line ℓi is determined, elimination of variables gives the roots of p.)

Modular forms Let Γ(n) = {A ∈ SL2(Z) : A ∼ Imodn}, and let X(n) =
H/Γ(n). Then Γ(1)/Γ(5) = PSL2(Z/5) is isomorphic to A5. Moreover,
the quotient space X(1) is the (2, 3,∞) orbifold, while the quotient space
Y = P1/A5 is the (2, 3, 5) orbifold (with underlying space the sphere). With
suitable normalizations, we obtain a commutative diagram:

X(5) −−−−→ P1

y f

y

X(1) −−−−→ Y = P1/A5.

Let j : H → X(1) be the modular j-function, and h : H → X(5) a
suitable modular function uniformizing the quotient by Γ(5). To compute
q = f−1(p), we first compute a point τ ∈ j−1(p), and then set q = h(τ).
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The transcendental function j intervenes in this calculation much as the
exponential function intervenes in the calculation of roots, when the latter
are computed by

z1/n = exp(log(z)/n).

The Brauer group. To compute the values of a and b for the Tschirnhaus
transformation that makes a2 vanish, one needs to extract a square-root.
This ‘accessory irrationality’ does not diminish the Galois group — we still
have S5 acting on Q. Rather, it serves to kill an element in the Brauer
group.

In general, if L/K is a field extension with Galois group G, we have an
exact sequence in group cohomology

H1(G,GLn+1(L)) → H1(G,PGLn+1(L)) → H2(G,L∗). (1.1)

(Recall that group cohomology is the derived functor of the fixed subgroup
functor. If A is a group equipped with an action of G, thenH1(G,A) consists
of the crossed homomorphism ρ : G→ A, satisfying

ρ(gh) = ρ(g)hρ(g),

modulo the coboundaries of the form ρ(g) = aga−1.)
To interpret these groups geometrically, suppose L/K corresponds to a

finite map π : Y → X between projective varieties. The first two of these
‘Galois cohomology groups’ classify rank n+1 vector bundles and Pn bundles
over X that become trivial when lifted to Y .

For example, let P → X be a Pn-bundle that pulls back to P ′ → Y .
Then G acts on P ′ compatibly with its action on Y . If P ′ is (birationally)
trivial, then after choosing an isomorphism P ′ ∼= Y × Pn, we can write the
action of g ∈ G on P ′ by:

g · (y, ξ) = (g(y),mg(y) · ξ)

where mg : Y → Aut(Pn). Since mg(y) depends rationally on Y , we can
regard ρ(g) = mg as a twisted homomorphism ρ : G→ PGLn+1(L). Chang-
ing the trivialization of P ′ changes ρ by a coboundary, and P is trivial iff
P ′ can be trivialized so the action of G becomes trivial.

By the exact sequence (1.1), the obstruction to writing a projective space
bundle as PV for a vector bundle V is an element of H2(G,L∗). When L is
the algebraic closure of K this group is known as the Brauer group Br(K).
Every element of Br(K) arises from some Pn bundle [Ser1, X.5].
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It is know that H1(G,GLn+1(L)) = 0. Geometrically, this comes from
the fact that every vector bundle of rank n+1 V → X admits n+1 rational
sections that are generically linearly independent. These sections trivialize
V over a Zariski opens set.

Thus a Pn-bundle is trivial iff its image in the Brauer group is zero.
It is also known that a Pn bundle is trivial iff it admits a section [Ser1,

Ex. 1, §X.6]. For example, given p ∈ P ∼= P1, we can canonically write
P = PV ∗ where

V = O(p) = {rational functions f on P1 with at worst a simple pole at p.}.

Similarly, a section of a P1-bundle P over X allows one to canonically con-
struct a vector bundle V → X with Vx = Γ(Px,O(p))∗; then P = PV .

A5 and P1-bundles. We can now ask, given an A5 extension of varieties
Y → X, if there is a map f : X → P1 such that Y is the pullback of the
icosahedral covering P1 → P1. That is, can we find a map f : X → P1 with
a lift to Y making the diagram:

Y
f̃−−−−→ P1

A5

y A5

y

X
f−−−−→ P1

commute?
Let L/K = K(Y )/K(X), and let G = Gal(L/K) ∼= A5,. The icosahedral

representation ρ : G→ PSL2(C) determines an element of H1(G,PSL2(L)),
as well as a flat P1-bundle

P = (Y × P1)/A5 → X.

Constructing a map f as above, with the required lift to Y , is the same as
finding a section of P/Y . This is the same as writing P = PV for a rank
two vector bundle V → X, and hence killing [ρ] in H1(X,PSL2(L)).

A universal instance of this obstruction arises when we try to solve the
general quintic polynomial: we take X = Y = C5, with A5 acting by per-
mutation of coordinates. The space Y is the space of quintic polynomials,
and the space Xis the space of their roots.

To reduce the solution of the quintic to inversion of degree 60 icosahedral
map P1 → P1, we must trivialize the bundle E → Y by a (cyclic, rational)
extension of the base. The obstruction to this trivialization comes from the
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nontrivial Z/2 central extension of A5, which is classified by H2(A5,Z/2) ∼=
Z/2 and which determines an element in the Brauer group H2(G,L∗).

Twisting P1 over a torus. Here is an easily-visualized example of a
nontrivial P1-bundle. Let V = Z/2 × Z/2 be the Klein 4-group, acting on
P1 via z 7→ −z and z 7→ 1/z. Let X = C/Z[i] be a complex torus, and let

ρ : π1(X) ∼= Z× Z → V

be a surjective homomorphism. Then from V we obtain a flat (and hence
holomorphic) P1-bundle P → X, with monodromy ρ.

Suppose P is isomorphic to the trivial bundle P1×X. Then the original
flat connection determines a unique conformal isomorphism between any
two nearby fibers. Integrating the connection from a basepoint, we obtain
a map

c : X → PSL2(C)/V.

Noting that SL2(C) is the universal cover of PSL2(C), we find that the
fundamental group of the target is the quaternion group Ṽ given by the
preimage of V in SL2(C).

Thus π1(c) gives a lifting of ρ to a homomorphism ρ̃ : π1(X) → Ṽ . But
since π1(X) is abelian, no such lifting exists.

Degree 4. A similar obstruction arises for polynomials of degree 4. Here
S4 acts on P1 by the symmetries of the cube. Letting D ⊂ Poly4 denote the
discriminant locus, and B4 the braid group, we have a map

ρ : π1(C
4 −D) ∼= B4 → S4

recording the permutation of roots under monodromy.
We can ask if one can construct a family of rotating cubes over C4 −D

that exhibits the same monodromy. The answer is no. Such a family would
give a lifting of the map B4 → S4 to the binary octahedral group S̃4 ⊂
SL2(C), by the same argument as above. But there are two commuting
braids that give the permutations (12)(34) and (13)(24) respectively, whose

lifts to S̃4 can never commute, since they too generate a quaternion group.
Thus ρ determines a nontrivial P1-bundle over C4 −D. It can be shown

that this bundle remains trivial when restrict to any Zariski open subset of
C4 −D, and thus it cannot even be birationally trivialized.

The Brauer group obstruction for the quintic, killed by the accessory
irrationality, is similar.

Bundles over curves. It is known that the Brauer group of the function
field of a curve X over C is trivial (cf. [Ser1, p.156]). That is, every Pn
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bundle over X has a rational section and can be trivialized over a Zariski
open subset of X.

1.7 Quintic polynomials: dynamics

The classical theory of equations concerns solution by radicals. That is, we
enrich our arithmetic constructions by adjoining the operation of forming
nth roots. As we have seen, Newton’s method provides a reliable computa-
tional scheme for computing radicals.

How is it, then, that quartic polynomials can be solved by radicals, but
not by purely iterative algorithms?

The reason is that the solution to the quartic has nested radicals. Al-
though each individual radical can be computed by iteration, there is no
single dynamical system in one variable to compute the entire expression.

This suggest that we should broaden our perspective, and enrich our
arithmetic operations by including all algebraic functions (such as radicals)
that can be reliably computed by purely iterative algorithms.

Computable extensions. To formulate a result using Galois theory we
use the language of birational geometry and field extensions.

Let V be an irreducible (quasi-)projective variety over C, and K = K(V )
its function field. We can visualize a finite extension L/K, L = K[z]/p(z),
as the function field L = K(W ) of the graph

W = {(λ, z) : pλ(z) = 0} ⊂ V × Ĉ

of the (rational) correspondence

λ 7→ [the zeros of pλ(z)].

Now let T : V → Ratd be a generally convergent purely iterative algo-
rithm. Then the map

λ 7→ A(Tλ),

sending a parameter λ ∈ V to the attractor of the corresponding map,
determines a correspondence V → Ĉ. Let us suppose the graph W ⊂ V × Ĉ

of this correspondence is irreducible. Then T determines a finite extension
L = K(W ) of V . We refer to L as the output field of T .

A tower of algorithms is described by a sequence of fields K = K1 ⊂
K2 ⊂ · · · ⊂ Kn as above, and rational maps Ti ∈ Ki(z), i < n, such that
Ki+1 is the output field of Ti.

A field extension L/K is computable if it is isomorphic over K to a
subfield of Kn for some tower of algorithms.
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Theorem 1.11 A Galois field extension L/K is computable iff its Galois
group G is within A5 of solvable.

This means G = Gal(L/K) admits a subnormal series

G = Gn ✄Gn−1 ✄ . . .✄G1 = id

such that each quotient Gi+1/Gi is cyclic or A5. (One also says G is nearly
solvable.)

Rational maps with symmetry. Let Aut(f) denote the finite subgroup
of Aut(Ĉ) commuting with a rational map f . Any finite subgroup of Aut(Ĉ)
is isomorphic to Z/n, Dn, A4, S4 or A5. Of these, all but A5 are solvable.
The key to the result above is to construct a rational map with A5 symmetry.

Let G be a finite group of Möbius transformations. Here are 3 ways to
construct f such that Aut(f) ⊃ G.

1. Projectively natural Newton’s method. (Also known as Halley’s method.)
If we use the osculating Möbius transformation instead of the osculating lin-
ear function, we get

Np(z) = z − p(z)p′(z)

p′(z)2 − 1
2p

′′(z)p(z)
.

If p(z) is a G-invariant rational function, then Np(z) is a G-invariant rational
map (with attracting fixed points at the roots of p.)

On the other hand, if p is G-invariant then its degree is d · |G| for some
d. So p would have degree at least 60 for the icosahedral group, and hence
Np would be of even higher degree.

2. Riemann maps. Consider the sphere tiled by 12 circular pentagons
in the usual dodecahedral pattern, symmetric under A5. Let F

′ denote the
pentagon antipodal to F . There is a unique conformal map from F to Ĉ−F ′,
sending vertices to antipodal vertices. These maps piece together to give a
degree 11 rational map f with A5 symmetry.

A similar construction yields A5-invariant maps of degrees 19 and 29,
using tilings of the sphere by equilateral triangles and by rhombuses, re-
spectively. But how would we every find formulas for these functions?

3. Invariant theory. Let us lift G to a subgroup of SL(E), where E ∼=
C2 (a central extension may be required for this lifting). A homogeneous
polynomial (or form) f : E → C is invariant if g∗(f) = χ(g) · f for some
character χ : G→ C∗; it is absolutely invariant if χ is trivial.

For example, the forms λ = (x dy − y dx)/2 and ω = dx dy are absolute
invariants of any group G. Note that dλ = ω.
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Since E is a vector space, Tp(E) is naturally isomorphic to E, and thus
T ∗
p (E) ∼= E∗. Thus a homogeneous 1-form on E is the same thing as a

homogeneous polynomial map α : E → E∗. Projectivizing, from α we
obtain a rational map f : PE → PE∗ ∼= PE, which inherits the symmetries
of α.

Concretely, if α = α1(x, y) dx + α2(x, y) dy, and z = x/y, then the
corresponding rational map is given by f(z) = −α2(z, 1)/α1(z, 1). The
formula comes from the fact that α annihilates the vector (x, y) = (−α2, α1)
with z = −α2/α1. (The choice of z is compatible with the usual action of a
matrix

(
a b
c d

)
by (az + b)/(cz + d).)

Theorem 1.12 To any finite set S ⊂ P1, there is canonically associated a
rational map fS : P1 → P1 with deg(fS) = |S| − 1. Every symmetry of S
gives rise to an automorphism of fS.

Examples. For S = {0}, {0,∞} and {1, exp(2πi/3), exp(−2πi/3)}, the
corresponding maps are fS(z) = 0, fS(z) = −z and fS(z) = 1/z2. In
general S coincides with the fixed points of fS .

Corollary 1.13 Any orbit S of G on P1 gives rise to a G-invariant rational
map f with deg(f) = |S| − 1.

Theorem 1.14 A homogeneous 1-form α is invariant if and only if

α = g(v)λ + dh(v),

where g and h are invariant homogeneous polynomials with the same char-
acter, and deg(g) = deg(h) + 2.

Example: the icosahedral group. The group G has 3 special orbits, of
cardinalities 12, 20 and 30. The corresponding invariant polynomials are:

f = x11y + 11x6y6 − xy11

H = −x20 − y20 + 228(x15y5 − x5y15)− 494x10y10

T = x30 + y30 + 522(x25y5 − x5y25)− 10005(x20y10 + x10y20).

Note that the degree 60 invariants f5, H3 and T 2 satisfy a linear relation,
since a generic orbit of the A5 action moves in a linear system.

Theorem 1.15 Every homogeneous polynomial invariant under the binary
icosahedral group is a polynomial in f , H and T .
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From df we obtain the invariant rational function

f11(z) =
z11 + 66z6 − 11z

−11z10 − 66z5 + 1

of degree 11. Similarly, formulas for the invariant functions of degrees 19
and 29 constructed geometrically above can be computed from dH and dT .

Theorem 1.16 The critical points of the map f11(z) are periodic, and
A(f11) coincides with the 20 vertices of the dodecahedron, each of which
has period 2.

Corollary 1.17 The quintic equation can be solved by a tower of purely
iterative algorithms.

Proof. Let L/K be the icosahedral extension, where K = C(x) and G =
Gal(L/K) ∼= A5. By the classical theory of the quintic, if this extension is
computable, then the quintic can be solved.

Let
ρ : G→ PSL2(C)

be the icosahedral action of G on the Riemann sphere. By the vanishing of
the Galois cohomology group H1(G,PSL2(L)), there is a φ ∈ PSL2(L) such
that

φg = ρ(g) ◦ φ
for all g ∈ G. (Note that G acts trivially on C ⊂ L, so ρ can be considered
as a crossed homomorphism from G to PSL2(L).)

Now let f(z) be the degree 11 rational map invariant under ρ(G). Let

T = φ−1 ◦ f ◦ φ ∈ L(z).

Then T g = T for all g so in fact T ∈ K(z).
The map T ◦ T (z) is our desired algorithm. The output field for T is

given by K(α) ⊂ L, where α ∈ L parameterizes one of the 20 attractors of
T . Since A5 acts transitively on these 20 attractors, with A3 stabilizers, the
field K(α) is the fixed field of an A3 ⊂ A5. Thus K(α) contains the fixed
field of an A4 ⊂ A5; that is, we have K ⊂ K(ri) ⊂ K(α), where ri is one of
the roots of the 5th degree equation.

This shows a root of the original quintic can be computed from the
output of the purely iterative algorithm T ◦ T .
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1.8 Higher degree

Degree 6: The Valentiner group. In 1889 Valentiner discovered an
action of A6 on P2, generalizing the action of A5 on P1. (These examples are
sporadic — they do not exist for general An). In the 1990s Crass and Doyle
proposed an algorithm for solving sextic equations based on the iteration of
a degree 19 rational map f : P2 → P2 with Valentiner symmetry.

There are 12 copies of A5 in A6, each preserving a conic (coming from
the representation of A5 in SO(3)). (There are 6 copies that act like permu-
tations stabilizing a point, and 6 copies that act like A5 does on the 6 pairs
of opposite faces of the dodecahedron.) The degree 19 map leaves each of
these conics invariant and restricts to the degree 19 map mentioned above
(coming from the 20 vertices of the dodecahedron). It is conjectured that
these points attract an open, full measure subset of P2, but this statement
has only been checked experimentally.

Theoretical tools for analyzing the dynamics of rational maps on Pn,
n > 1, will be discussed below. Because the critical points of such a map
form an infinite set (they are a divisor of positive dimension), it is possible
to have infinitely many attractors.

Degree 7: Hilbert’s 13th problem. Is every algebraic function of 3
variables a composition of algebraic functions of 2 or fewer variables?

This question is perhaps the original motivation for Hilbert’s 13th prob-
lem. As a specific function that might truly require 3 variables, Hilbert
considered the map that sends (a, b, c) to the roots of the 7th degree poly-
nomial z7 + az3 + bz2 + cz + 1.

1.9 Exercises

1. Show that if f expands some Riemannian metric on its Julia set, then
f is hyperbolic.

2. Show directly that Newton’s method for a quadratic polynomial p(z)
converges to the closer root — and thus its Julia set is the line of
points equidistant from the roots of p.

3. Sketch a topological picture of the Julia set of the S3-symmetric map
f(z) = (z4 +2z)/(2z3 +1). (Hint: what are the preimages of the cube
roots of unity?)

4. Give an example of a rational map f(z) of degree two whose Julia set
is the whole Riemann sphere. (Hint: arrange that c1 maps to c2, and
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then c2 lands in two iterations on a fixed point, where c1 and c2 are
the two critical points of f .)

5. Let E be the complex torus C/Z[i] and let F : E → E be the degree
two map given by F (z) = (1 + i)z. Show that F covers the map
f above; that is, construct a degree two map p : E → Ĉ such that
p(F (z)) = f(p(z)). (Hint: p should be branched over the four points
that form the forward orbit of the critical points of f .)

6. Find all the rational maps of degree d ≤ 3 that commute the group of
Möbius transformations S3 generated by z 7→ 1/z and z 7→ ωz.

7. Let p(z) = z3 + az + b. Find an explicit formula for the algorithm
Tp(z) for solving cubics given by Theorem 1.9.

8. Show that Tp(z) is nothing more than Newton’s method for the rational
function

r(z) =
z3 + az + b

3az2 + 9bz − a2
·

Check that the points of inflection of r(z) coincide with the roots of
p(z).

9. Show the two zeros of the denominator of r(z) coincide with the fixed
points of the group of Möbius transformations cyclically permuting
the three roots of the numerator.

10. Compute the ring of invariants for the group S4 of symmetries of the
cube, and use its generators to construct rational maps of degrees 5,
7 and 11 with octahedral symmetry.

11. Let pn and fn be the dimension of the space of homogeneous, degree n,
2 ·A5-invariant polynomials and 1-forms on C2, respectively. Compute
the generating functions for

∑
pnt

n and
∑
fnt

n.

12. Let p(z) = z5 + z3 + 1. (a) Compute the quintic polynomial q(w)
satisfied by w = z2 + az + b. (b) Show that a and b can be chosen to
make the coefficients of w4 and w3 both equal to zero.

13. Let B = C∗ × C∗, and let E → B be the P1 bundle whose fiber over
(a, b) ∈ X is the conic in P2 with affine equation

E(a,b) = {(x, y) ∈ C2 : ax2 + by2 = 1}.
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(a) Show that E admits no rational section. (b) Show that E admits a
smooth section. (c) Show that E cannot be smoothly trivialized over
B.

14. Let Qr ⊂ R3 be the affine quadric defined by q(x, y, z) = r, where
q(x, y, z) = x2 + y2 − z2. The locus Q−1 can be interpreted as (two
copies of) the hyperbolic plane H, with SO(q) acting isometrically.

(a) Show that Q1 can be interpreted as the space of oriented geodesics
in H. (b) Interpret the two rulings of Q1 as pencils of geodesics in H.
(c) Interpret the isomorphism of algebraic varieties

Q1
∼= RP1 × RP1 − (diagonal)

in terms of hyperbolic geometry.

15. Given S ⊂ P1 with |S| = d+1, show that for all p ∈ S the canonically
associated rational map satisfies fS(p) = p and f ′S(p) = −d.

16. A kite is a quadrilateral (in Euclidean, spherical or hyperbolic geom-
etry) which is symmetric about the line joining some pair of opposite
vertices. Show that any two kites are conformally equivalent, by a
map taking vertices to vertices.

17. Construct geometrically all the rational maps f : P1 → P1 with A5

symmetry such that f has degree 59, and every critical point of f has
nontrivial stabilizer in A5. (Hint: use the result on kites above, and
the fact that 116 = 36 + 80 = 36 + 20 + 30 = 96 + 20.)

18. Prove Theorem 1.14. (Hint: use the fact that if g(x, y) is a homoge-
neous polynomial of degree D, and λ = x dy − y dx, then d(g · λ) =
(D + 2) g(x, y) dx dy.)

1.10 Unsolved problems

1. Is the open set of hyperbolic rational maps dense among all rational
maps of degree d? Among all polynomials of degree d? (Even the case
of quadratic polynomials is open).

2. Show that a suitable map f : P2 → P2 with A6 symmetry is generally
convergent, thus verifying that the sextic can be solved by iteration in
two variables.
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1.11 Notes

A systematic treatment of the dynamics of rational maps on Ĉ can be found
in [Mil], [CG] and [MNTU].

The problem of constructing generally convergent algorithms for solv-
ing polynomials was formulated by Smale in [Sm] and resolved in [Mc1].
The generalization to towers of iterations, and the solution to the quintic
polynomial, are given in [DyM]. The approach to sextic polynomials using
iteration on P2 and the Valentiner group is detailed by Crass and Doyle in
[CD].

A modern perspective on the classical theory of the quintic equation
(as in Klein’s lectures on the icosahedron [Kl]) appears in a letter of Serre
[Ser2]. See also [Ser1] for more on Galois cohomology and the Brauer group.
Hilbert’s 13th problem, on polynomials of degree 7, and its algebraic re-
formulation by Arnold and Shimura, are discussed in [Br] (see pp. 20 and
45).
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2 Dynamics on Pk

In this section we turn to the study of dynamics in several complex variables.
To facilitate the discussion of forms and cohomology, we will study holomor-
phic dynamics on compact complex manifolds X. Because of compactness,
it will be easy to take limits of functions, forms, measures and currents. We
will also avoid the difficulties posed by the locus of indeterminacy of rational
maps.

The simplest higher-dimensional complex manifolds are projective spaces,
so we will concentrate in this chapter on dynamics on Pk.

It must be mentioned that a great deal of work has been done on poly-
nomial automorphisms of Cn, especially the Hénon maps on C2, and that
these examples fall outside of the present considerations.

2.1 Overview and examples

Let f : Pk → Pk be a holomorphic endomorphism. Such a map can always
be written in homogeneous coordinates in the form

z = [zi] 7→ F (z) = [Fi(z)]

where Fi ∈ C[z0, . . . , zk] are homogeneous polynomials, all of the same de-
gree d and with no common factor. The fact that f is not just a rational
map, but is well-defined everywhere, is reflected in the fact that the only
common zero of the polynomials Fi is at the origin in Ck+1.

Degree. We refer to d as the (algebraic) degree of f . It is characterized
by the property that for any hyperplane H ⊂ Pk, the preimage f−1(H) is a
hypersurface of degree d. In other words, f acts on H2(Pk) by x 7→ d · x.

The topological degree of f is given by dk. This is the number of preimages
of a generic point in Pk.

Critical points. The critical locus C(f) ⊂ Pk is the hypersurface along
which detDf vanishes; it has degree (k + 1)(d − 1).

Julia set. Just as for P1, we define the Fatou set Ω(f) ⊂ Pk to be the set
of points where F = {f, f2, f3, . . .} forms a normal family. Its complement
is the Julia set J(f).

Examples.

1. Let F [z0, z1, z2] = [zd0 , z
d
1 , z

d
2 ]. Then f leaves the lines in P2 defined by

zi = 0 invariant, and acts on each by z 7→ zd.
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In an affine chart we have f(z, w) = (zd, wd). The Julia set in these
coordinates is the union of the 3 sets defined by |z| = 1 ≥ |w|, |w| =
1 ≥ |z| and |z| = |w| ≥ 1. Note that J(f) ∩ C2 is definitely not equal
to (J(zd) × C) ∪ (C × J(wd)). Moreover, the closure of the repelling
periodic points is strictly smaller than J(f) — it is a sort of ‘fine Julia
set’, given by {(z, w) : |z| = 1, |w| = 1} ∼= S1 × S1.

In this case, whether or not (z, w) lies in J(f) depends only on the
absolute values of the coordinates. Thus J(f) can be described pic-
torially by its projection to R2 under (z, w) to (|z|, |w|); see Figure
2.

|z|=|w|

|z|=1

|w|=1

Figure 2. The Julia set of (zd, wd) as a circled domain.

2. Let F : C2 → C2 be a homogeneous polynomial map of degree d > 1
lifting a rational map f : P1 → P1 of degree d. Since F is proper, it
extends to an endomorphism of P2, leaving the line at infinity L ⊂ P2

invariant. Moreover, F |L is isomorphic to f |P1.

Since F (λz) = λdF (z), the origin z = 0 is a superattracting fixed point
for F . Let B ⊂ C2 denotes its basin of attraction. Let K ⊂ P2 denote
the cone with base J(f) ⊂ L and vertex z = 0. Then we have

J(F ) = (K −B) ∪ ∂B.

In particular, when J(f) = P1, the Julia set J(F ) contains a neigh-
borhood of L but excludes a neighborhood of the origin z = 0. This
shows:

For an endomorphism F : Pk → Pk, k ≥ 2, the Julia set can
contain a nonempty open set even when J(F ) 6= Pk.
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3. Given a pair of monic polynomials of the same degree, the map f(z1, z2) =
(p(z1), q(z2)) extends from C2 to an endomorphism of P2. When z1
and z2 are large, we have p(z1)/q(z2) ≈ zd1/z

d
2 , and thus f acts on the

line at infinity by z 7→ zd.

4. Recall that Pk is the same as the k-fold symmetric product (P1)(k).
Given a rational map f : P1 → P1, we obtain an endomorphism of Pk

by letting F (zi) = (f(zi)) for any unordered k-tuple of points zi ∈ P1.
Compare [Ue].

5. Let E = C/Λ be an elliptic curve, and let F : Ek → Ek be the
endomorphism F (x) = dx. Let G = Sk⋉(Z/2)k acting by permutation
and negation of coordinates on Ek. Then Ek/G ∼= P k, and since F
commutes with G it descends to a degree d endomorphism of Pk.

This map can also be thought of as a k-fold symmetric product of a
Lattés example on P1. Using the fact that F is expanding on Ek it is
easy to see that J(f) = Pk.

6. The post-critical set of f is defined by

P (f) =
∞⋃

1

fn(C(f)).

An endomorphism of Pk is critically finite if P (f) is an algebraic vari-
ety, i.e. if every component of C(f) eventually cycles.

A nice example of such a map on P2, due to Fornaess and Sibony, is
given in affine coordinates by

f(z, w) =

((
z − 2w

z

)2

,

(
(z − 2)

z

)2
)
· (2.1)

The map f has degree two, so C(f) has degree 3; it consists of the
lines

(C1, C2, C3) = (z = 2w, z = 2, z = 0).

(These are the lines along which the numerator or denominator in one
of the squared expressions for f vanishes.)

Under iteration, each of these lines eventually enters the cycle

(P1, P2, P3) = (z = 1, w = 1, z = w),

satisfying P1 7→ P2 7→ P3 7→ P1. One can show that the Julia set of f
is all of P2 [For, p.15]
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Cohomology and fixed-points.

Theorem 2.1 A holomorphic map f : Pk → Pk of algebraic degree d acts
on H2i(Pk,Z) and on H2i(P

k,Z) by multiplication by di.

Proof. That f |H2(Pk,Z) is multiplication by d is the definition of the
algebraic degree. The general case follows from Poincaré duality and the
fact that if x generates H2(Pk,Z), then xi generates H2i(Pk,Z).

Theorem 2.2 The fixed points of an endomorphism f : Pk → Pk of degree
d > 1 are isolated.

Proof. If not, then f(z) = z on some curve C ⊂ Pk. Since the map
f : C → C has degree one, we have f∗([C]) = [C] in H2(P

k,Z). On the
other hand we have just seen that f∗([C]) = d[C]. Since [C] 6= 0, this is a
contradiction.

For another, more analytical proof, see [FS, Thm 3.1].

Corollary 2.3 The map f has 1 + d + d2 + · · · + dk fixed points, counted
with multiplicity.

Proof. The cohomology ring of X = Pk × Pk is given by

H∗(X) = Z[α, β]/(αk+1 = βk+1 = 0),

where αiβj = [Pk−i×Pk−j]. The graphs of f and of the identity map satisfy:

gr(id) =
k∑

0

αk−iβi,

gr(f) =
k∑

0

diαk−iβi,

as can be verified using the intersection pairing in the middle-dimensional
cohomology of X. Thus their product is given by

(1 + d+ d2 + · · ·+ dk)αkβk.
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It can be shown that the multiplicity of a given isolated fixed point
remains bounded under iteration. Therefore we have:

Theorem 2.4 The map f has infinitely many periodic cycles.

In stark contrast to the case of rational maps on P1, it is known that an
endomorphism of P2 can have infinitely many attracting cycles [Ga].

Theorem 2.5 The critical points C(f) ⊂ Pk are a divisor of degree (k +
1)(d − 1).

2.2 The escape rate for polynomials on C

Subharmonic functions. Recall that a function h is subharmonic if the
distributional Laplacian ∆h = µ is a positive measure. A continuous func-
tion is subharmonic iff it satisfies the sub-mean-value property:

h(p) ≤ 1

2π

∫

S1

h(p + reiθ) dθ.

The subharmonic functions on R are just the convex functions.

Example. Let h(z) = log+|z| = max(0, log |z|); it is a continuous, subhar-
monic function on C, since it is the maximum of two harmonic functions.
Clearly µ = ∆h is supported on the unit circle S1 and rotationally invariant.
Integrating ∇ log |z| over a large circle, we conclude that the total mass of
µ is 2π and thus µ coincides with arclength on S1.

Like harmonic functions, subharmonic functions are preserved under
composition with holomorphic maps.

Escape rates. Let f : C → C be a monic polynomial of degree d > 1. Its
filled Julia set, K(f), is the set of points with bounded orbits in C. It is
easy to see that K(f) is compact and ∂K(f) = J(f).

The escape rate of f is the function φ : C → R given by

φ(z) = lim
n→∞

d−nlog+|fn(z)|.

The limit of the sequence φn(z) on the right exists uniformly on C. To see
this, note that |f(z)|/|z|d → 1 as z → ∞, and thus d−1log+|f(z)| − log+|z|
is uniformly bounded on C; therefore |φn+1(z) − φn(z)| = O(d−n), and the
limit converges geometrically fast.

Using the fact that uniform limits of subharmonic functions are subhar-
monic, we find:
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Theorem 2.6 The escape rate φ(z) ≥ 0 is a subharmonic function, vanish-
ing on K(f) and harmonic on C−K(f). It satisfies:

φ(z) = log |z|+O(1)

for z large, and φ(f(z)) = dφ(z).

Charge. The equilibrium measure is given by µ = (1/2π)∆φ. It is a
probability measure supported on J(f). The terminology comes from the
fact that a unit charge confined to K(f) will distribute itself according to µ
to minimize energy. From the properties of φ we have immediately:

Theorem 2.7 The measure µ satisfies f∗µ = d · µ and f∗µ = µ.

Proof. The first assertion follows from the functional equation φ(f(z)) =
dφ(z), and the second from the fact that f∗f

∗(ν) = dν for any measure ν.

The measure µ records the distribution of almost any inverse orbit. Let
us say a point z ∈ Ĉ is exceptional if its grand orbit is finite. The point z = ∞
is exceptional for polynomials, and z = 0 is exceptional for f(z) = zn; these
are essentially the only kinds of exceptional points for rational functions.

Theorem 2.8 Let p ∈ C be any non-exceptional point, and let

µn = d−n
∑

fn(z)=p

δz.

Then µn → µ (weakly) as n→ ∞.

Sketch. For subharmonic functions, uniform convergence φn → φ implies
weak convergence of the corresponding measures: ∆φn → ∆φ. Let φ0(z) =
(1/2π)log+|z| and φn(z) = (φ0 ◦ fn(z))/dn. By uniform convergence of the
escape function, we have

νn = ∆φn → µ.

Here νn = d−n(fn)∗(ν0), and ν0 is arclength measure on S1 normalized to
have total mass one.

Now the Theorem asserts that d−n(fn)∗(δp) → µ. To indicate the main
ideas, we give the argument in the case where the critical points satisfy
C(f) ⊂ K(f), and z 6∈ K(f). (Later we will establish a much more general
result.)
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First, suppose we replace log+|z| with another continuous, subharmonic
function h(z), also satisfying h(z) = log |z| for z large. Then we still have
φ(z) = lim d−nh(fn(z)) uniformly. (Indeed, if z escapes to infinity, it enters
the regime where h(z) = log |z| as before, while if z stays bounded, so does
h(z) and hence φ(z) = 0.)

Now for r > 0 small, let h(z) = log+|z − p|/r. Then ν0 = ∆h is normal-
ized arclength on the small circle

S1(p, r) = {z : |z − p| = r}

By the same argument as above, we have νn = d−n(fn)∗(ν) → µ.
Choose r small enough that B(p, 2r) ∩K(f) = ∅. Since C(f) ⊂ K(f),

the inverse map f−n has dn distinct univalent branches defined on B(p, 2r).
Each branch has bounded distortion on B(p, r). The set f−n(B(p, r)) lies in
an ǫn-neighborhood of K(f), with ǫn → 0. Since the area of such a neigh-
borhood, minus K(f) itself, goes to zero, so does the area of f−n(B(p, r)).

By bounded distortion, the diameter of each component of f−n(S1(p, r))
is also bounded by a constant dn → 0. But each such component encloses a
point of f−n(p). Thus µn and νn have the same weak limits, and therefore
µn → ν.

Brownian motion and Riemann maps. The measure µ(E) can also be
interpreted as the probability that a Brownian particle starting at z = ∞
first hits K(f) in the set E.

When K(f) is connected (which is equivalent to C(f) ⊂ K(f)), we can
construct a canonical Riemann mapping

h : C−K(f) → C−∆,

normalized by h(z) = z + O(1) for z large (in other words, by h′(∞) =
1). Then h conjugates f(z) to zd; that is, we have h(f(z)) = h(z)d; and
the escape rate is given simply by φ(z) = log |h(z)|. Indeed, the Riemann
mapping can be given by the formula:

h(z) = lim
n→∞

(fn(z))1/d
n

with a suitable choice of dnth root.

Examples.

1. For f(z) = zd, the measure µ is normalized arclength on J(f) = S1.

27



2. The map f(z) = z2−2 is semiconjugate to s(z) = z2; indeed, h(s(z)) =
f(h(z)) where h(z) = z + z−1. Thus J(f) = h(J(s)) = [−2, 2], and
the measure µf = h∗(µs) is given by

µf =
dx

π
√
4− x2

·

3. For f(z) = zd + M , M large, J(f) is a Cantor set isomorphic to
the 1-sided d-shift Σd = (Z/d)N, and µ is isomorphic to the standard
measure on σd, i.e. the product of the probability measures on Z/d
that assign equal weight to each point.

4. For a Lattès example coming from multiplication by n on an elliptic
curve E = C/Λ, the escape-rate approach above does not make sense
to define µ. Nevertheless, the inverse images of points are clearly dis-
tributed according to the push-forward of normalized Lebesgue mea-
sure on E. This measure is proportional to

|dz|2
|(z − a1)(z − a2)(z − a3)(z − ar)|

if the 2-fold semiconjugacy p : E → Ĉ is ramified over {a1, a2, a3, a4}.

2.3 Forms, currents, divisors and Chern classes

Currents. Let X be a complex manifold of dimension n. The space of
(p, q) currents on X is the dual to the space of smooth, compactly supported
(n− p, n− q) forms.

A smooth (p, q)-form ω is also a (p, q) current, with pairing given by

〈ω, η〉 =
∫

X
ω ∧ η.

The space of (locally finite, Borel) measures on X is canonically a subspace
of the space of (n, n)-currents. A (p, q)-current is essentially a (p, q)-form
with distributional coefficients.

As usual we can extend differential operators to currents by integration
by parts. A current is closed if dω = 0; equivalently, if 〈ω, dα〉 = 0 for all
compactly supported smooth forms α.

A smooth (p, p)-form α is positive if, for any complex submanifold Y ⊂ X
of dimension p, the restriction α|Y defines a non-negative volume element
on Y . A current is positive if 〈ω,α〉 ≥ 0 for every smooth positive form.
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Currents analogous to the delta function come from submanifolds. If
Z ⊂ X is a properly embedded complex submanifold of codimension p, then
the current of integration over Z is the (p, p)-current given by:

〈[Z], η〉 =
∫

Z
η

for any smooth, compactly supported (n− p, n− p)-form η.

Proposition 2.9 For any properly embedded codimension p complex sub-
manifold Z ⊂ X, the (p, p)-current [Z] is closed and positive.

In particular, hypersurfaces in X give rise to closed, positive (1, 1)-
currents.

Variants of the Laplacian. Next we introduce a variant of the Laplacian
whose values are also (1, 1)-currents.

To keep the algebra simple, we begin with complex dimension one. On
C we have the differential operators

∂

∂z
=

1

2

(
∂

∂x
− i

∂

∂y

)
and

∂

∂z
=

1

2

(
∂

∂x
+ i

∂

∂y

)

and we can write d = ∂ + ∂, where on functions we have

∂f =
∂f

∂z
dz and ∂f =

∂f

∂z
dz,

and similarly for forms. Note that ∂∂f = (1/4)∆f and dz∧dz = −2i dx∧dy.
Thus we have

∂∂f =
1

2i
∆f dx ∧ dy.

To recover reality, we introduce the operator

dc =
i

2π
(∂ − ∂).

It is real in the sense that dcf = dcf . Moreover, we have

ddcf =
i

π
∂∂f =

1

2π
∆f dx ∧ dy.

In particular, f is subharmonic iff ddcf is a positive (1, 1)-current.
Now recall that ∆ log |z| = 2πδ0 as a distribution. The normalization of

ddc is particularly convenient here: we have ddc log |z| = δ0 as well, where δ0
is now interpreted as a (1, 1)-current, or measure. More generally we have:
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Theorem 2.10 Let f be a meromorphic function on a Riemann surface,
with divisor (f) =

∑
nP · P . Then we have

ddc log |f | =
∑

nP δP . (2.2)

Several complex variables. The differential operators above generalize in
the expected way to several complex variables. For example, formula (2.2)
works just as well in higher dimensions, giving the Poincaré-Lelong formula
(see [GH, p.388]):

Theorem 2.11 For any meromorphic function f on a complex manifold
with divisor (f) =

∑
nZ · Z, we have

ddc log |f | =
∑

nZ [Z],

where [Z] denotes the current of integration over the hypersurface Z.

(Note: our definition of dc differs by a factor of 1/2 from [GH, p.109].)

Pluriharmonic functions. Let f : X → R be a locally integrable function.
We say f is pluriharmonic if ddc(f) = 0; equivalently, if the restriction of
f to every complex disk ∆ ⊂ X is harmonic. (In this case f is actually
smooth.)

Similarly, f is plurisubharmonic if ddc(f) ≥ 0 as a current; equivalently,
if f |∆ is subharmonic for every holomorphic disk ∆ ⊂ X.

Theorem 2.12 A function f : X → R is pluriharmonic iff f is locally the
real part of a holomorphic function.

Proof. If f = (g + g)/2 is the real part of a holomorphic function, then
∂g = ∂g = 0; hence ∂∂(f) = 0 and ddc(f) = 0.

Conversely, if ddc(f) = 0, then α = ∂f satisfies ∂α = 0. Thus α is a
holomorphic (1, 0)-form; integrating, we can locally write α = dg for some
holomorphic function g. Then we have ∂g = 0 and ∂g = α = ∂f . Thus:

d(g + g) = (∂g) + ∂g = (∂f) + ∂f = (∂f) + ∂f = df.

It follows that f(z) = Re(2g) + c.
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Subharmonic functions and positive measures are (locally) interchange-
able. The same is true for plurisubharmonic functions and closed, positive
(1, 1)-currents by:

Theorem 2.13 (The ∂∂-Poincaré Lemma) Every closed, positive (1, 1)-
current is locally of the form ω = ddcf , where f is a plurisubharmonic
function.

See [GH, Chap. 3.2]

Remark. On a complex n-manifold, the equation ddc(f) = 0 imposes
n(n+ 1)/2 conditions on f , since a (1, 1)-form has n(n+ 1)/2 components.
The fact that we have more than one condition when n > 1 reflects the
fact that the Cauchy-Riemann equations are overdetermined on complex
manifolds of dimension two or more.

Positivity and metrics. If ω is a smooth positive (1, 1)-form on X, it can
be used to define a Hermitian metric on X. For real tangent vectors, the
metric is given by:

g(v)2 = ω(v, Jv)

where J gives the complex structure on the real tangent space to X. For
(the more usual) vectors in the holomorphic tangent bundle TX, the metric
is given by:

g(v)2 = −2i ω(v, v).

If we write the form in local coordinates as

ω =
i

2

∑
aij dzi ∧ dzj,

then the metric is given by:

g(v)2 =
∑

aijvivj.

Thus ω is positive iff (aij) is a positive definite Hermitian matrix. (The
condition that ω is real, i.e. that ω = ω, already implies aji = aij .)

Kähler manifolds. A Kähler manifold is a pair (X,ω) consisting of a
complex manifold X equipped with a smooth, closed, positive (1, 1)-form
ω. For example, the Euclidean metric on Cn (satisfying g(∂/∂zi) = 1) is
attached to the closed (1, 1)-form:

ω =
i

2

n∑

1

dzi ∧ dzi =
∑

dxi ∧ dyi.
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Thus Cn is Kähler. The restriction of ω to a complex coordinate line gives
the standard area form dxi ∧ dyi. On the other hand, of the 2n cross terms
arising in the formula for ωn, only those n! resulting from a permutation of
the coordinates are nonzero, and thus

ωn = n! · dx1 ∧ dy1 ∧ · · · ∧ dxn ∧ dyn.

That is, ωn/n! agrees with the volume form coming from the metric deter-
mined by ω.

The same computation yields Wirtinger’s theorem: for any complex sub-
manifold Y k of a Kähler manifold (X,ω) we have

vol(Y k) =
1

k!

∫

Y
ωk.

It is a remarkable fact that positivity makes sense for forms on a complex
manifold. The submanifolds of a real manifold are not canonically oriented,
so positivity does not make sense in the real setting, nor is their any real
analogue of Wirtinger’s theorem.

GAGA for analysts. Let X be a compact complex manifold. To compute
the cohomology of X, one can replace the de Rham complex of smooth
forms with the complex of currents. The result ends up being the same; the
two groups are naturally isomorphic. In particular, every closed current is
cohomologous to a smooth form.

Compactness of currents. The set of all probability measures on a com-
pact Hausdorff space is itself compact.

In local coordinates, a positive (p, p)-current is a matrix of measures.
Thus with a suitable boundedness statement, one expects compactness. Here
is a precise statement.

Theorem 2.14 Let (X,ω) be a compact complex n-manifold, equipped with
a smooth, positive (1, 1)-form such that ωn is everywhere nonzero. Then the
space of all positive (p, p)-currents α on X with total mass satisfying

M(α) =

∫

X
α ∧ ωn−p ≤ 1

is compact.

Proof. For any smooth real form β of type complementary to α, we can
find a constant C > 0 such that Cωn−p ± β is positive. Then we have

∣∣∣∣
∫
α ∧ β

∣∣∣∣ ≤ CM(α),
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and hence α ranges in a compact subset of the dual to the space of smooth
forms.

In the case of a Kähler manifold, we can take ω to be a closed, positive
(1, 1)-form. Then the mass M(α) depends only on the cohomology class of
α. This shows:

Corollary 2.15 Let X be a Kähler manifold, and let K ⊂ Hp,p(X) be a
compact set. Then set of all closed, positive (1, 1)-forms representing coho-
mology classes in K is compact.

Line bundles. Now let L → X be a holomorphic line bundle over a
compact Riemann surface X. A (Hermitian) metric on L is given locally by

‖ξ‖ = g(z) · |ξ|,

where (z, ξ) are coordinates on a holomorphic trivialization L|U ∼= U × C.

Theorem 2.16 The first Chern class of L is represented by the form given
locally by ω = −ddc log(g).

Note that under a change of coordinates on L, g(z) is replaced by g(z)h(z)
with h ∈ O∗(U); since ∂∂ log |h(z)| = 0, the value of ω does not change, and
hence it is globally well-defined.

Sketch. Here is an intuitive proof of the Theorem above. First, if g1 and
g2 are two metrics, then g1/g2 is a globally well-defined, nowhere vanishing
smooth function, and the corresponding (1, 1) forms satisfy

ω1 − ω2 = −ddc log(g1/g2).

Thus the de Rham cohomology class of ω is independent of the choice of
metric.

Secondly, if f : X → L is any meromorphic section, then its divisor
represents c1(L) and is given by the current ddc log |f |, where we have locally
expressed the section as a map f : U → C with respect to a trivialization
L|U ∼= U × C.

Finally, a section determines a singular metric on L by declaring ‖f(z)‖ =
1, or in other words by setting ‖ξ‖ = |ξ|/|f(z)| locally. For this ‘metric’
we have g(z) = 1/|f(z)|, and thus the first Chern class is represented by
(f) = ddc log |f | = −ddc log g.
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Absence of divisors. We should remark that if we work outside the
context of projective varieties, not every line bundle admits a meromorphic
section, so the sketch doesn’t quite apply. E.g. if X = C2/Λ is a complex
torus with no divisors, we still have nontrivial (flat) line bundles on X
coming from representations ρ : π1(X) → S1; of these, only the trivial
bundle admits a meromorphic section.

Example. Let X be a Riemann surface of genus g ≥ 2, and let TX be
the tangent bundle to X. The hyperbolic metric |dz|/y on H of constant
curvature −1 gives a Hermitian metric on TX. The volume form for this
metric is given by

α =
|dz|2
y2

=
dx ∧ dy
y2

and satisfies
∫
X α = 4π(g − 1) by Gauss-Bonnet. Since g(z) = 1/y on H,

the first Chern class of TX is represented by the form

ω = ddc log(y) =
i

π
∂∂ log(z − z) =

i

π

dz ∧ dz
(z − z)2

=
i

π

(−2i dx ∧ dy)
(−4y2)

= − 1

2π

dx ∧ dy
y2

= − 1

2π
α.

Thus
∫
X ω = (−1/2π)

∫
X α = 2− 2g = χ(X), as expected.

Upstairs on the line bundle. Here is a more global formulation of the
result on c1(L).

Consider the function G : L → R defined by G(z, ξ) = ‖ξ‖g. Then
ω1 = −ddc logG is a closed (1, 1)-form on the complement of the zero section
in L. Since locally G(z, ξ) = g(z)|ξ|, and ddc log |z| = 0, the form G is pulled
back from the base manifold X (it only depends on z). Writing ω1 = π∗(ω),
we have c1(L) = [ω].

Fubini-Study metric. The most basic example of the global formula for
the first Chern class comes from the tautological bundle L → Pk. Recall
that the complement of the zero section of L can be identified with Ck+1−0.
The standard metric on L is given simply by

G(z) = G(z0, . . . , zk) = |z| =
√∑

|zi|2.

Since −ddc logG gives c1(L), we have:

Theorem 2.17 The form ω1 = ddc log |z| on Ck+1 is pulled back from a
form ω on Pk with

[ω] = c1(L
∗) ∈ H2(Pk,Z).
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In particular for any hyperplane H we have
∫

H
ω = 1.

The form ω is the symplectic form associated to the Fubini-Study metric
on Pk. This metric is normalized so that the volume of Pk is equal to 1.

Example. By a direct calculation, we obtain

ω1 =
i

2π
∂∂ log |z|2 = i

2π
· 〈z, z〉〈dz, dz〉 − 〈dz, z〉〈z, dz〉

|z|4 ,

where 〈a, b〉 =∑ aibi. In the case of P1 with affine coordinate z, we can pull
back ω1 to P1 via z 7→ (z, 1) = (z0, z1) to obtain:

ω =
i

2π
· (1 + |z|2 − |z|2) dz ∧ dz

(1 + |z|2)2 =
1

π
· |dz|2
(1 + |z|2)2

(since dz ∧ dz = −2i|dz|2). The usual metric of constant curvature 1 on P1

has area form α = 4|dz|2/(1 + |z|2)2, satisfying
∫
α = 4π; thus

∫
ω = 1 as

expected.

Primitives. It is intuitively reasonable that if we have a charge distribution
µ on a closed Riemann surface X with

∫
X µ = 0, then there should be a

harmonic function h such that ∆h = 0. This function h is simply the
potential for this charge distribution. For example, if µ has finite support,
then ∇h gives the minimum energy area-preserving flow with the specified
sources and sinks. The sinks and sources must exactly cancel so that area
can be conserved.

In higher dimensions we have an analogous result.

Theorem 2.18 Let M be a compact Kähler manifold. Then a smooth,
closed (1, 1)-form ω represents 0 ∈ H2(M,C) if and only if ω = ddcf for
some smooth function f .

Proof. We will show equivalently that ω = ∂∂f .
We first treat the case M = Pk, which is the only case needed for our

applications to dynamics. Then the Dolbeault cohomology group H0,1

∂
(Pk)

vanishes, since it appears as a factor in the Hodge decomposition ofH1(Pk) =
0.

We can assume ω = ω. Since ω is exact and real, we can write

ω = d(α + α) = (∂ + ∂)(α+ α),
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where α is a (1, 0)-form. Then ∂α = 0, since this form represents the (0, 2)
part of d(α + α). By the vanishing of H0,1

∂
(Pk), we have α = ∂f for some

smooth function f . Thus we have

ω = (∂ + ∂)(∂f + ∂f) = ∂∂(f − f),

completing the proof.
In the general case, whenH0,1

∂
(M) 6= 0, we again appeal to Hodge theory

to assert that the de Rham and Dolbeault decompositions of the cohomology
of M agree. In dimension one this gives the isomorphisms:

H1(M) ∼= H0,1

∂
(M)⊕H1,0

∂
(M) ∼= Ω(M)⊕ Ω(M),

where Ω(M) is the space of holomorphic 1-forms on M . (Every such form
is closed.)

Thus the class [∂α] ∈ H0,1

∂
(M) is represented by the complex conjugate

β of a closed holomorphic 1-form. This means we can write α = β + ∂f .
Since d(β) = d(β) = 0, we obtain ω = ∂∂(f − f) just as before.

Compare [GH, p. 149].

Corollary 2.19 If there is a line bundle L→M such that [ω] = c1(L), then
there is a Hermitian metric g on L whose curvature form is ω = −ddc log g.

Proof. Choose an arbitrary Hermitian metric h on L and solve the equation
ddcf = ω+ ddc log h. Then ω gives the curvature of the metric g = e−fh.

Products of currents. It is a notorious fact that a product of distribu-
tions, or a product of currents, does not make sense in general. However
it is clear geometrically that the intersection of analytic submanifolds often
does make sense. This suggest that certain currents do admit products.

Indeed, let α and β be a pair of closed, positive currents. Suppose in
addition that α is locally given by a continuous potential; that is, we can
locally write α = ddc(γ) for some continuous form γ.

Then α ∧ β is a well-defined current. Its pairing with a smooth form ξ
of complementary dimension is defined by

∫
ξ ∧ α ∧ β =

∫
ξ ∧ (ddcγ) ∧ β =

∫
(ddcξ) ∧ γ ∧ β.

Here we have formally used integration by parts and the fact that β is closed.
Also we have assume (without loss of generality) that the support of ξ is
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small enough that we can express α in terms of the continuous potential γ
over the support of ξ.

Finally we note that the last expression above is well-defined because
the positive form β, being like a measure, pairs with the continuous form
(ddcξ) ∧ γ.
Stein manifolds. A complex manifold X is Stein if X admits a proper
holomorphic embedding in Cn for some n. Thus Stein manifolds are analo-
gous to, and include, affine algebraic varieties.

Theorem 2.20 Let T be a closed, positive (1, 1)-form on a Stein manifold
X. Then the complement of the support of T is also a Stein manifold.

This result can be compared to the fact that the complement of a hy-
persurface in an affine variety is again an affine variety. That is, one can
imagine that the support of T is like a possibly diffuse divisor on X. See
[Ue] for a proof.

2.4 The escape rate on Ck+1

Experience with complex manifolds suggests that in passing from dimension
one to higher dimensions, it is often advantageous to replace points by di-
visors. Dynamically, this means that understanding the orbit of a divisor
might be as useful as understanding the orbit of a point.

In this section we discuss a potential-theoretic approach to the equi-
librium measure already discussed for polynomials on C. This approach,
introduced by Hubbard and Papadopol, has several advantages:

1. It applies immediately to rational maps on P1 and to endomorphisms
of Pk.

2. It suggests that the natural generalization of the equilibrium measure
µf to Pk is a positive (1, 1)-current Tf , rather than a measure.

3. It makes it easy to show that Tf gives the asymptotic distribution of
the backwards orbit of a diffuse divisor.

Lifting. Let f : Pk → Pk be a holomorphic map of algebraic degree d > 1.
We begin by lifting f to a homogeneous polynomial map

F : Ck+1 → Ck+1.

The map F is uniquely determined by f up to composition with z 7→ λz,
λ ∈ C∗.

37



Since F (λz) = λdF (z), the map F has a superattracting fixed point at
z = 0. Moreover, letting

B(F ) = {z : fn(z) → 0}

denote the basin of attraction of the origin, we have fn(z) → ∞ for all z
outside B(F ).

Thus the lifted map F has plenty of attracting and wandering behavior,
even in the cases where J(f) = Pk. The advantages of passing to F are
reminiscent of the advantages of considering the action of a Kleinian group
Γ on H3, where its action is properly discontinuous even when the limit set
Λ(Γ) = Ĉ.

Escape rate on Ck+1. We now define, as in the case of polynomials in
one variable, the escape rate of F by

φ(z) = limφn(z) = lim d−n log ‖Fn(z)‖.

(By convention, φ(0) = −∞.)

Theorem 2.21 The escape rate converges uniformly on Ck+1, and defines
a plurisubharmonic function satisfying φ(λz) = log |λ|+ φ(z) and

φ(F (z)) = dφ(z).

Proof. Note that b(z) = log |F (z)| − log |z|d is homogeneous of degree zero
and continuous, hence bounded (by its max on |z| = 1.) Because of this, we
have

φn(z)− φn−1(z) = d−n
(
log |F (Fn−1(z))| − log |Fn−1(z)|d

)
= O(d−n).

Thus φn(z) converges uniformly and exponentially fast.
Since log |z| is plurisubharmonic, so is log |Fn(z)|, and hence so is the

limit φ(z). The functional equations satisfied by φ are immediate.

Metrics and currents. Note that the function g(z) = exp(φ(z)) can be
interpreted as a continuous metric on the tautological bundle over Pk. Thus
there is a closed, positive (1, 1)-current Tf on Pk, defined by

ddcφ(z) = π∗(Tf ),

representing the cohomology class of a hyperplane section as well as the
induced metric on the dual of the tautological bundle. We refer to Tf as the
canonical current for f .

38



Theorem 2.22 The current Tf on Pk satisfies f∗(Tf ) = dTf , f∗(Tf ) = Tf
and

d−n(fn)∗(ω) → Tf

for any smooth, closed (1, 1)-form ω on Pk normalized such that
∫
Pk ω

k = 1.

(The last condition means simply that [ω] represents the positive generator
of H2(Pk,Z).)

Proof. The functional equations satisfied by Tf follow from those satisfied
by φ. As for the convergence, we have already verified this for the special
case of the symplectic form of the Fubini-Study metric, ω0 = ddc log |z|.

But for any other normalized form, ω−ω0 is cohomologous to zero, which
implies ω − ω0 = ddc(h) for some smooth function h on Pk. Since we have

d−n(fn)∗(ddc(h)) = ddc(d−nh ◦ fn) → 0,

convergence also holds for ω.

Other norms and metrics. Here is an alternative perspective on the
result above, that makes it clear that we can have

d−n(fn)∗(ω) → Tf

even when ω is not smooth.
Let h : (Ck+1 − 0) → R be any positive, continuous function satisfy-

ing h(λz) = |λ|h(z). Define the associated curvature form by π∗(ωh) =
ddc log h(z). By compactness of the unit sphere, the ratio h(z)/‖z‖ is uni-
formly bounded on Ck+1 − 0, and hence we have:

Theorem 2.23 For any continuous metric h on the tautological bundle to
Pk, we have:

φ(z) = lim d−n log h(Fn(z))

uniformly, and hence
d−n(fn)∗(ωh) → Tf .

We have seen that any smooth (1, 1)-form ω in the correct cohomology
class arises as the curvature of a (smooth) metric h, so we have an alterna-
tive proof that such forms converge to the canonical current under iterated
pullback.

Consistency with polynomials. For example, take the metric given by
the L∞ norm:

h(z) = ‖z‖∞ = sup |zi|.

39



In the case of C2, the current on P1 given by ddc log ‖z‖∞ is simply normal-
ized arclength measure along the unit circle |z| = 1. Moreover, we have

log ‖(z, 1)‖∞ = log+|z|.

From this it follows that Tf coincides the measure µf defined previously for
polynomials on C.

Moreover, if we lift a polynomial p(z) = C → C via F (z, w) = (P (z, w), wd)
— where P (z, w) is the homogenization of p(z) — then the line L = {(z, 1) :
z ∈ C} is invariant under F . It follows that

φ(z, 1) = lim d−nlog+|pn(z)| = φf (z)

agrees on this affine slice with the escape rate previously defined for p : C →
C.

Julia sets via currents. We can now relate Tf to J(f).

Theorem 2.24 The Julia set of f coincides with the support of the closed,
positive (1, 1)-current Tf .

Proof. Let p ∈ Pk belong to the Fatou set of f . Then there is a neighbor-
hood U of p such that fn|U converges uniformly to a holomorphic function
g : U → Pk, at least along a subsequence nk → ∞.

Shrinking U if necessary, we can assume that g(U) is contained in a small
ball B ⊂ Pk. Let ω be a normalized smooth closed (1, 1)-form on Pk such
that

∫
U ω = 0. Then it is clearly that ωn = d−n(fn)∗(ω) = 0 on U , at least

along a subsequence nk → ∞. But we have ωn → Tf , so Tf |U = 0.
Conversely, suppose Tf = 0 on an open ball V ⊂ Pk. Let

π : Ck+1 − {0} → Pk

be the natural projection, let F : Ck+1 → Ck+1 be a lift of f , and let φ(z) be
its escape rate. Recall that B(F ) = {z : φ(z) < 0} is the basin of attraction
of z = 0 for F .

We claim there is a holomorphic section s : V → Ck+1 of π such that
s(V ) ⊂ ∂B(F ).

Indeed, since Tf |V = 0, the escape rate φ is pluriharmonic on the open
cone U = π−1(V ) ⊂ Ck+1 − {0}. Thus we can write φ = log |g| for a
holomorphic function g on U . (First write φ = Reh, then g = eh; and use
the fact that U is simply-connected.) Since φ(λz) = φ(z) + log |λ|, we have

g(λz) = λg(z).
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In particular, dg 6= 0.
Let V0 = {z ∈ U : g(z) = 1}. Then φ|V0 = 0, so we have V0 ⊂ ∂B(F ).

By the homogeneity condition above, V0 meets every line C∗ · z ⊂ U in a
unique point, and V0 is a complex hypersurface since dg 6= 0. Thus there is
a unique holomorphic section s : V → V0; it is characterized by

{s([z])} = (C∗ · z) ∩ (V0).

Finally, we can write fn|V = π ◦ Fn ◦ s. Since we have s(V ) = V0 ⊂
∂B(F ), and B(F ) is bounded and F -invariant, the iterates Fn ◦ s form
a normal family. Thus fn|V also forms a normal family, and hence V is
contained in the Fatou set of f .

We can state the last part of the argument more intrinsically.

Theorem 2.25 The part of ∂B(F ) lying over the Fatou set of f on Pk

admits a foliation F by complex k-manifolds, with

TF = Ker(∂φ).

Any simply-connected region U ⊂ Pk − J(f) admits a holomorphic lifting to
a leaf of F inside ∂B(F ).

Note that α = ∂φ is a holomorphic 1-form on the cone over Ω(f) in Ck+1.

The invariant measure. Given f : Pk → Pk, we obtain a natural invariant
probability measure µf by setting

µf = T k
f .

This measure satisfies f∗(µf ) = µf and f∗(µf ) = dkµf . The kth power of
the current Tf is well-defined because Tf is closed and positive, and because
it admits a continuous potential coming from the escape rate.

Theorem 2.26 For any normalized smooth symplectic form ω on Pk, we
have

µf = lim d−nk(fn)∗(ωk).

Proof. We have already seen that d−n(fn)∗ω → Tf , so this result follows
from suitable continuity results regarding wedge products.
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Stratified Julia sets. In higher dimensions it seems useful to stratify the
Julia set, by defining J1(f) = J(f) = supp(Tf ) and

Ji(f) = supp(T i
f ).

For example, we have seen that on P2 we can have examples where ∅ 6=
int(J(f)) 6= P2. But we will later see (Corollary 2.54) that Jk(f) = Pk

whenever intJk(f) 6= ∅.
Metrics on P1. The escape rate for a rational map on P1 gives a Hermitian
metric on O(−1), which in turn gives a Kähler metric on P1 using the
isomorphism O(2) ∼= TP1. This metric g is determined up to scale, and
is characterized by the property that its curvature K(g), thought of as a
measure with total integral 4π (by Gauss-Bonnet), satisfies K(g) = 4πµf .

The metric g is flat outside of the Julia set. Because of this, the unit
tangent bundle for g is foliated by holomorphic curves. The holonomy of
this flat metric determines a homomorphism

ρ : π1(Ω(f)) → S1

which just gives the total mass of µf enclosed by a loop (on either side).
Under parallel transport along a closed loop γ ⊂ Ω(f), a unit vector is
rotated by ρ(γ).

For an easily-visualized example, consider the case f(z) = z2 + c with
c < −2. Then J(f) is a Cantor set on the real axis. With respect to the flat
metric g, the upper half-plane is isometric to a bounded ‘polygon’ P ⊂ C

with a Cantor set’s worth of ‘vertices’. The double of P gives (P1, g).

2.5 Kobayashi hyperbolicity

General theory. Let X be a complex manifold, and let ∆ be the upper
halfplane equipped with the hyperbolic metric

‖ξ‖∆ =
|dz(ξ)|
1− |z|2

of constant curvature −4. The Kobayashi Finsler metric on X is the length
function ‖ξ‖X , ξ ∈ TX, defined by

‖ξ‖X = inf{‖ξ′‖∆ : ∃ a holomorphic f : ∆ → X with Df(ξ′) = ξ.}

Define a distance function on X by:

dX(x, y) = inf
γ

∫ 1

0
‖γ′(t)‖X dt,
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with the infimum over all paths γ : [0, 1] → X joining x to y.
We say X is Kobayashi hyperbolic if dX(x, y) is actually a metric. (The

only danger is that we might have dX(x, y) = 0 even though x 6= y.)
Note: because of its normalization, the Kobayashi metric on H is given

by |dz|/(2y). An advantage of this normalization is that the Kobayashi and
Teichmüller metrics agree on Mg.

Schwarz lemma. The following result is immediate from the definitions.

Theorem 2.27 Let X be a Kobayashi hyperbolic manifold. Then any holo-
morphic map f : ∆ → X is distance decreasing; that is, we have

‖Df(ξ)‖X ≤ ‖ξ‖∆.

More generally, any holomorphic map between Kobayashi hyperbolic mani-
folds is non-expanding.

In other words, the Schwarz lemma holds by fiat for the Kobayashi metric.

Local behavior. It is known that dX(x, y) is continuous on X × X, and
that when it is a metric, it induces the usual topology on X. (Proof: the
open balls in (X, d) are path connected, and the intersection of BX(p, r) for
r > 0 is just {p}; thus the balls must eventually be disjoint from any small
sphere around p. See [Bar].)

From these statements we obtain:

Theorem 2.28 If X is Kobayashi hyperbolic, then there are Riemannian
metrics g and h such that

‖ξ‖g ≤ ‖ξ‖X ≤ ‖ξ‖h

for all ξ ∈ TX.

Proof. It suffices to prove the result locally. The result is immediate
for a polydisk, using the fact that any two Finsler norms invariant under
Aut(∆k) are comparable. The upper bound then follows, using the fact that
inclusions are contracting.

For the lower bound, let p be a point of X and U a neighborhood of p
such that (U, p) is biholomorphic to (∆k, 0). As we have just observed, ‖ξ‖U
is bounded below by a Riemannian metric. Thus it suffices to show that
‖ξ‖X is locally bounded below by a multiple of ‖ξ‖U .

Since the Kobayashi metric d induces the usual topology, there is an
r > 0 such that B(p, r) ⊂ U . Consider ξ ∈ TqX, q ∈ B(p, r/2), and let
f : (∆, 0) → (X, q) be a holomorphic map with Df(ξ′) = ξ. Then there is
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an s > 0, depending only on r, such that f(∆(s)) ⊂ U . Indeed, we need
only choose s such that the hyperbolic radius of ∆(s) about z = 0 is equal
to r/2. By considering f(sz) as a map from the unit disk into U , we find:

‖ξ′‖ ≥ s‖ξ‖U .

Taking the infimum, we conclude that ‖ξ‖X ≥ s‖ξ‖U .

If X is a domain in a compact complex manifold Y , we say X is hy-
perbolically embedded if there is a Riemannian metric g on Y such that
‖ξ‖X ≥ ‖ξ‖g.

Theorem 2.29 (Brody) A compact manifold X is Kobayashi hyperbolic
if and only if any holomorphic map f : C → X is constant.

Theorem 2.30 Let H ⊂ X be a hypersurface in a compact complex mani-
fold such that both H and X−H are hyperbolic. Then X−H is hyperbolically
embedded in X.

Examples.

1. The upper halfplaneH is Kobayashi hyperbolic, and ‖ξ‖H = |dz(ξ)|/(2 Im(z))
is a multiple of the usual hyperbolic metric.

2. The spaces C and Ĉ are not Kobayashi hyperbolic.

3. Kobayashi hyperbolicity is preserved under passing to covering spaces.
Thus a Riemann surface is Kobayashi hyperbolic iff its universal cover
is H.

4. The Kobayashi metric on a product is given by

‖ξ‖X×Y = max(‖(πX )∗ξ‖X , ‖(πY )∗ξ‖Y ).

In particular the Kobayashi metric on the polydisk ∆n gives an ℓ∞

norm on each tangent space.

5. Any subdomain of a Kobayashi hyperbolic manifold is also Kobayashi
hyperbolic.

6. Any bounded domain in Cn is Kobayashi hyperbolic.

7. Any manifold that can be immersed into a Kobayashi hyperbolic man-
ifold is itself Kobayashi hyperbolic.
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8. In contrast to the case of C — where the complement of 2 points is
already Kobayashi hyperbolic — the complement of a compact set in
C2 is never hyperbolic, since it still contains many complex lines.

9. Similarly, the Kobayashi metrics on X = H × H and on X − {p},
p ∈ X, are the same; thus the Kobayashi metric in higher dimensions
need not be complete.

10. The Kobayashi and Teichmüller metric on Teichmüller space Tg coin-
cide.

11. The complement of 4 lines in P2 is never hyperbolic. Indeed, we can
always find a 5th line that meets the original 4 in just two points. This
gives a copy of C∗ in the complement.

12. Let V =
⋃2k+1

1 Hi be a union of hyperplane in general position in
Pk. Then the complement X = Pk − V is Kobayashi hyperbolic and
hyperbolically embedded.

For a heuristic proof, note that any line L meets V in 2k + 1 points,
and L moves in a 2k − 2-dimensional family. By imposing 2k − 2
conditions on L, we can arrange that 2k− 1 points collapse to a single
point. There still remain 2 other points, so |L∩V | ≥ 3 for all L. Thus
L− V is ‘uniformly hyperbolic’.

(The detailed proof is a little delicate and turns on Borel’s Lemma: if
hi(z) are units, that is entire functions without zeros, and h1 + · · · +
hn = 0, then there is a subsum that is also identically zero and whose
terms satisfy hi = cif for some fixed unit f and some ci ∈ C∗.)

13. IfX is a submanifold of a complex torus Cg/Λ, andX does not contain
the translate of a subtorus, then X is Kobayashi hyperbolic (Green).

Blowup at divisors. The hyperbolic metric on the punctured disk ∆∗ is
given by ρ = |dz|/(|z| log(1/|z|)). Similarly, if X is a hyperbolic Riemann
surface, the hyperbolic metric onX−{p} is asymptotic to |dz|/(|z| log(1/|z|))
in an appropriate chart z near p with z(p) = 0.

It is useful to have a similar picture in higher dimensions. Such a picture
is provided by:

Theorem 2.31 Let D ⊂ X be a divisor in a Kobayashi hyperbolic manifold.
Let dVX−D = f(x) dVX relate the Kobayashi volume forms on X − D and
X. Then f(x) → ∞ as x→ D.
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Here the Kobayashi volume element dVX on Tp(X) is defined so that the
measure of the unit norm ball,

{ξ ∈ Tp(X) : ‖ξ‖X < 1},

agrees with the Euclidean volume of the unit ball in Ck, k = dim(X).

Lemma 2.32 Let D ⊂ X be any closed subset of a Kobayashi hyperbolic
manifold. Let B ⊂ X be an open set. Then the Kobayashi metrics ‖ξ‖X−D

and ‖ξ‖B−D are comparable on any compact subset of B.

Proof. Let K ⊂ B be a compact set. Choose s > 0 such that the diameter
of ∆(s) in the hyperbolic metric on ∆ is less than dX(K,∂B). Given a
vector ξ ∈ Tp(X), p ∈ K −D, let f : (∆, 0) → (X −D, p) be a holomorphic
map with Df(ξ′) = ξ. Then we have f(∆(s)) ⊂ B −D, so f(sz) is among
the maps competing to determine ‖ξ‖B−D . It follows that

‖ξ‖X−D ≤ ‖ξ‖B−D ≤ (1/s)‖ξ‖X−D

on K.

Proof of Theorem 2.31. Given a smooth point p ∈ D, choose a local
chart B ∼= ∆k in which p = 0 and B −D ∼= (∆∗) ×∆k−1. The Kobayashi
volume form on B − D blows up at D since the hyperbolic metric on ∆∗

blows up at zero. By the preceding Lemma, the metrics dX−D and dB−D

are comparable near p, so dX−D blows up at D as well.
The case of a divisor with normal crossings can be handled similarly. For

the general case one can appeal to embedded resolution of singularities.

Theorem 2.33 Let H ⊂ Pk be an algebraic hypersurface such that Pk −H
is Kobayashi hyperbolic. Then the volume of Pk−H in the Kobayashi metric
is finite.

Proof. Let z = 0 be the origin in ∆k. Then the volume of a small neigh-
borhood of z in U = (∆∗)j ×∆k−j is finite in the Kobayashi metric on U ,
since the volume of a neighborhood of 0 in ∆∗ is finite. But a neighborhood
of z in U models a neighborhood of p ∈ H in Pk−H (again using resolution
of singularities if necessary). Since inclusions are contracting, Pk − H has
finite volume.
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2.6 Hyperbolicity and Fatou components

For rational maps on P1, it is clear that every component of the Fatou set
Ω(f) = Ĉ−J(f) is hyperbolic. Indeed, J(f) is uncountable — so it contains
at least 3 points! — and the triply-punctured sphere is already hyperbolic.

To prove the analogous result in higher dimensions, we use the escape
rate.

Theorem 2.34 Every component of Pk−J(f) is Kobayashi hyperbolic and
hyperbolically embedded.

Proof. Let B(F ) ⊂ Ck+1 be the attracting basin of z = 0 for a lift F of f ,
and let F be the holomorphic foliation of the part of ∂B(F ) that lies over
a given component U of Ω(f). The natural projection π : F → U is proper,
so every leaf L of F is a covering space of U . Since L is immersed in the
bounded set B(F ), it is Kobayashi hyperbolic, so U is as well.

The Kobayashi metric on L is bounded below by a multiple of the
Kobayashi metric on a large ball (since inclusions are contracting), which in
turn is bounded below by a multiple of the pullback of the Fubini-Study g
metric on Pk. Thus the Kobayashi metric on U is also bounded below by a
multiple of g, and therefore U is hyperbolically embedded.

Corollary 2.35 The immediate basin B of any attracting cycle A ⊂ Pk

contains a critical point of f .

Proof. Otherwise f : B → B is a covering map, and hence an isometry for
the Kobayashi metric.

Number of attracting cycles. Of course in dimension k > 1 the critical
divisor C(f) has infinitely many points; this is why f can have infinitely
many attracting cycles when k > 1.

Critically finite maps. Recall that f is critically finite if the postcritical
set P (f) is an algebraic variety (i.e. if every component of C(f) eventually
cycles.) In this case, setting V = Pk − P (f), and U = f−1(V ), we obtain a
covering map

f : U → V

as well as an inclusion
ι : U →֒ V.
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Now assume V (and hence U) is Kobayashi hyperbolic. Since f is a
Kobayashi isometry, and ι is a contraction, we see ‖f ′(x)‖U ≥ 1 when it is
defined (i.e. when x and f(x) both lie in U). This expansion greatly aids
the analysis of the dynamics of f .

Theorem 2.36 Let f be critically finite, with Pk − P (f) Kobayashi hyper-
bolic. Then fn(x) → P (f) for all x in the Fatou set of f .

Lemma 2.37 If f is critically finite, and the complement of P (f) is Kobayashi
hyperbolic, then f−1(P (f)) is strictly larger than P (f).

Proof. The map f : U → V is a covering map of degree dk. Since V is the
complement of a hypersurface, its Kobayashi volume is finite, and thus the
volume of U is dk-times larger. Thus U 6= V .

Proof of Theorem 2.37. Suppose to the contrary that there exists an
x ∈ Ω(f) such that along a subsequence, we have fn(x) → y 6∈ P (f). Then
we can find a ball Bx containing x and a limit h of a subsequence of fn|Bx

such that h(x) = y.
Now f expands the metric ρU and the associated volume element. On

the other hand, h expands volume only a finite amount, despite the fact that
h is a limit of compositions involving high iterates of f near y. It follows
that there is a neighborhood By on which all iterates of f are isometries.
Moreover, y is recurrent, since we can find fn(x) ∈ B close to y such that
fn+m(x) is also close to y, and hence fm(y) is close to y.

It follows that there is a subsequence along which fn|By converges to the
identity. By considering inverses lifted to the universal covers, we obtain at
the same time a subsequence such that

f−n : Ṽ → Ṽ

converges to the identity globally on Ṽ . (Note that these maps are contrac-
tions, hence equicontinuous.) But f−n sends Ṽ into Ũ , a proper subset of
Ṽ , so this is a contradiction.

Corollary 2.38 Let f : P1 → P1 be critically finite. Then every point in
Ω(f) tends under iteration to a superattracting cycle. In particular, if f has
no such cycles, then J(f) = P1.
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Corollary 2.39 Let f : P2 → P2 be a critically finite map, such that P2 −
P (f) is Kobayashi hyperbolic.

Suppose each periodic component X of P (f) is a rational curve, and f i :
X → X is itself critically finite with Julia set equal to X. Then J(f) = P2.

This Corollary can be applied to the example of a critically finite map
given in equation (2.1) above.

Fatou–Bieberbach domains. It is worth noting that domains which are
not Kobayashi hyperbolic also arise in complex dynamics. Extreme examples
are provided by Fatou-Bieberbach domains. These are proper subdomains
U ⊂ Cn that are biholomorphic to Cn itself.

Such domains can only exist when n > 1. Their existence is guaranteed
by the following linearization result. Let us say n numbers λi ∈ C∗ have a
resonance if for some λj, we can write

λj =

n∏

1

λni

i

with ni ≥ 0 and
∑
ni ≥ 2.

Theorem 2.40 Let f : Cn → Cn be a holomorphic automorphism with
f(p) = p. Suppose the eigenvalues λ1, . . . , λn of Df(p) have no resonance
and satisfy |λi| < 1. Then:

1. the map f is linearizable at p; and

2. the immediate basin of attraction of p is isomorphic to Cn.

See [St].
Now let f : C2 → C2 be an automorphism of the form

f(z, w) = (p(z) + αw, βz),

where 0 < |α|, |β| < 1 and where p(z) is a polynomial. Suppose p has at-
tracting fixed-points at z1, z2. Then f has attracting fixed points near (zi, 0),
so long as α and β are sufficiently small. Generically the eigenvalues at these
fixed points have no resonances, so we obtain a pair of disjoint attracting
basins Bi

∼= C2. Since they are disjoint, each is a Fatou-Bieberbach domain.
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2.7 Classification of Fatou components

In this section we summarize what is known about the possible dynamics of
f on the Fatou set.

Classification on P1. The classification is rather complete in dimension
one.

Theorem 2.41 (Sullivan) Let f : P1 → P1 be a rational map. Then ev-
ery component of Ω(f) eventually cycles, and there are only finitely many
periodic components.

Theorem 2.42 (Classification of stable regions) A component Ω0 of
period p in the Fatou set of a rational map f is of exactly one of the following
five types:

1. An attractive basin: there is a point x0 in Ω0, fixed by fp, with 0 <
|(fp)′(x0)| < 1, attracting all points of Ω0 under iteration of fp.

2. A superattractive basin: as above, but x0 is a critical point of fp, so
(fp)′(x0) = 0.

3. A parabolic basin: there is a point x0 in ∂Ω0 with (fp)′(x0) = 1,
attracting all points of Ω0.

4. A Siegel disk: Ω0 is conformally isomorphic to the unit disk, and fp

acts by an irrational rotation.

5. A Herman ring: Ω0 is isomorphic to an annulus, and fp acts again by
an irrational rotation.

Classification on Pk. It is not known if a holomorphic map f : Pk → Pk

can have a wandering domain; that is, a component Ω0 of Ω(f) whose for-
ward iterates never cycle. However, Ω(f) can have infinitely many periodic
components, since f can have infinitely many attracting cycles when k > 1.

Now suppose Ω0 is a periodic component of Ω(f). Replacing f with
a suitable iterate, we can assume Ω0 is an invariant component. Then
f : Ω0 → Ω0 is non-expanding for the Kobayashi metric.

We say Ω0 is recurrent if for any z0 ∈ Ω0, there is a compact set K ⊂ Ω0

such that fn(z0) ∈ K for infinitely many n.

Rotation domains. We say Ω0 is a rotation domain if there the maps
fn|Ω0 converge to the identity along a subsequence. For example, it is
known that a holomorphic map in one variable of the form

f(z) = e2πiθz +O(z2)
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is linearizable near z = 0, provided θ is Diophantine (Siegel). The Dio-
phantine condition means there is an N such that |θ − p/q| > 1/qN for
all rationals p/q. A generalization of this result holds in higher dimensions
(Sternberg).

Thus f has a rotation domain centered at every fixed point whose deriva-
tive is a sufficiently Diophantine isometry. Explicit examples in higher di-
mensions can also be obtained by taking products of 1-dimensional examples.

Theorem 2.43 Let Ω0 ⊂ Ω(f) ⊂ Pk be an invariant, recurrent Fatou com-
ponent. If Ω0 ∩C(f) = ∅, then Ω0 is a rotation domain and 〈f〉 ⊂ Aut(Ω0)
is contained in a 1-parameter subgroup.

Proof. In this case f is a covering map and an isometry for the Kobayashi
metric. By recurrence we can find a point z0 such that fn(z0) → z0 along a
subsequence. Using compactness of the set of isometries, we can a further
subsequence such that fn|Ω0 converges to the identity. It follows that f is an
automorphism of Ω0. By compactness again, the subgroup 〈f〉 ⊂ Aut(Ω0)
contains elements accumulating to the identity; thus Ω0 is a rotation domain.
A 1-parameter group of automorphisms arises by considering the closure of
〈f〉.

This result accounts for the Siegel disk and Herman rings cases in di-
mension k = 1. A geometric classification of rotation domains in higher
dimensions is still lacking.

Recurrence with critical points. In dimension one, the dynamics on a
recurrent invariant domain Ω0 that meets C(f) is strictly contracting: we
have d(f(x), f(y)) < d(x, y) for x 6= y, by the Schwarz lemma. From this
one easily deduces that Ω0 contains an attracting or superattracting fixed
point.

In higher dimensions, mixed behavior is possible. For example, if θ is
Diophantine then the map

f(z, w) = (e2πzz + z2, w2)

has a Fatou component centered at (0, 0) and isomorphic to ∆2, on which f
is conjugate to (z, w) 7→ (e2πθz, w2). The dynamics is recurrent, but there
is no attracting fixed-point: instead, orbits converge to the disk ∆×{0} on
which f acts by a rotation. This is a general phenomenon.

Theorem 2.44 (Fornaess-Sibony) Let Ω0 ⊂ Ω(f) ⊂ P2 be an invariant,
recurrent component that meets C(f). Then either:
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1. f has an attracting or superattracting fixed-point in Ω0; or

2. there is a properly embedded disk, punctured disk or annulus X ⊂ Ω0,
such that fn(z) → X for all z ∈ Ω0, and f |X is an irrational rotation.

It seems likely that a similar result holds in higher dimensions, by con-
sidering X = g(Ω0) where g is the limit of a subsequence of fn|Ω0.

Non-recurrent components. A fixed-point z0 for f : P1 → P1 is parabolic
if f ′(z0) is a root of unity. In this case an iterative of f in an appropriate
chart with z0 = 0 has the form

fn(z) = z + zp . . .

and f has p attracting petals at z = 0. These petals lies in Ω(f), while z = 0
itself lies in the Julia set.

If Ω0 ⊂ P1 is a non-recurrent component, then one can show f has a
fixed point on ∂Ω0 by considering the accumulation points of fn(z0). The
argument uses the fact that the hyperbolic metric on Ω0 blows up relative
to the spherical metric, to deduce that

dP1(fn+1(z0), f
n(z0)) → 0.

A higher-dimensional generalization of this result is as yet unknown. It
is not even known if a non-recurrent component has a fixed point on its
boundary.

The one-dimensional proof breaks down because the Kobayashi metric
on a domain U ⊂ Pk, k > 1, need not blow as one tends to ∂U . For example,
when U = ∆ ×∆, the Kobayashi length of the vector (1, 0) at pn = (0, xn)
is bounded below as xn → 1.

2.8 Lelong’s theorem

Let X ⊂ B(0, r) ⊂ R2 be a properly embedded arc passing through the
origin. It is then clear that the length of X ∩B(0, r) is at least 2r, and this
value is achieved when X is a diameter.

In the complex setting one has a similar statement, valid in arbitrary
dimensions, intuitively related to the fact that a complex submanifold of Cn

is volume-minimizing.

Theorem 2.45 (Lelong) Let X ⊂ Cn be a complex analytic variety of
dimension k passing through the origin z = 0, such that X ∩ B(0, R) is
closed. Then the Euclidean volume of Xk satisfies

vol(X ∩B(0, R)) ≥ vol(Ck ∩B(0, R)).
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Proof. For simplicity assume X is smooth. By the maximum principle, X
is transverse to ∂B(0, r) for 0 < r ≤ R. The Euclidean symplectic form on
Ck is given by:

ω =
π

2
ddc|z|2 =

i

2

∑
dzi ∧ dzi =

k∑

1

dxi ∧ dyi.

Define

F (r) =
1

r2k

∫

X∩B(0,r)
(ddc|z|2)k

Clearly F (r) = Ck is constant if X = Ck, and in any case F (r) → Ck as
r → 0 since X is approximated by its tangent plane at the origin. Thus to
complete the proof, we need only show that F (r) is increasing.

To further simplify, assume k = 1. By Stokes’ theorem we have

F (r) =
1

r2

∫

B(0,r)∩X
ddc|z|2 =

∫

S(0,r)∩X

dc|z|2
|z|2 =

∫

S(0,r)∩X
dc log |z|2,

and thus by Stokes’ theorem again, for r2 > r1,

F (r2)− F (r1) =

∫

X∩(B(0,r2)−B(0,r1))
ddc log |z|2.

Taking the limit as r1 → 0 we obtain:

F (r) = F (0) +

∫

B(0,r)∩X
ddc log |z|2.

We recognize the integrand on the left as (twice) the pullback of the Fubini-
Study form from Pn−1. Thus, letting π : Cn−{0} → Pn−1 denote the natural
projection, and letting B(0, r)∗ denote the ball with the origin removed, we
find:

F (r) = F (0) + 2 area(π(X ∩B(0, r)∗))).

Here the area is measured with multiplicity. Since π : X → Pn−1 has positive
degree everywhere, we see F (r) is increasing, completing the proof.

The case k > 1 is similar. For singular varieties, one uses the fact that
the smooth part of X behaves like a manifold for the purposes of integration.
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Multiplicity. If z = 0 is a singular point of X, the multiplicity of X at
0 can be defined as the degree of the (k − 1)-dimensional Zariski tangent
cone to X at the origin. The proof of Lelong’s theorem yields an alternative
geometric definition:

multp(X) = lim
r→0

vol(X ∩B(p, r))

vol(Ck ∩B(0, r))
·

This formula makes sense with X replace by an arbitrary closed, positive
(k, k)-current T ; the resulting multiplicity (which may be real-valued) is
known as the Lelong number of T at p. Siu has shown that the set of points
where T has Lelong number ≥ c > 0 is a subvariety of pure dimension p
[Siu].

Excess formula. The proof of Lelong’s theorem gives an exact formula
relating the volume of X ∩ B(0, r) to its image in projective space. In the
one-dimensional case we obtain:

vol(B(0, r) ∩X) = πr2 (mult0(X) + area(π(X ∩B(0, r)∗))) , (2.3)

with the normalization area(P1) = 1 for a line in Pn−1.

2.9 Entropy

Definition. Let f : X → X be a continuous map of a compact metric space
(X, d0) into itself. Define a sequence of metrics by

dn(x, y) = max n
i=0 d(f

i(x), f i(y)).

A subset E of a metric space is ǫ-separated if d(x, y) > ǫ for all x 6= y in
E. A subset E of X is (n, ǫ)-separated if it is ǫ-separated for the metric dn.
The topological entropy of (X, f) is defined by

h(f) = sup
ǫ>0

lim sup
n

logmax(|E| : E ⊂ X is (n, ǫ)-separated)

n
·

It is easy to show that h(f) depends only on the topology of X, not on the
metric d.

Example. Let Σk = (Z/k)N, and let f(xi) = (xi+1) be the shift operator.
It is convenient give Σk the metric:

d(x, y) = k−min(j : xj 6=yj).
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Then E ⊂ Σk is (n, ǫ)-separated if for any x 6= y in E we have xi 6= yi for
some i ≤ n+ log(1/ǫ)/ log(k). It follows easily that h(f) = log k.

More generally, if X ⊂ Σk is a closed, f -invariant set, then h(f |X) =
lim(logWn)/n, where Wn (words of length n) is the number of different
sequences (x1, . . . , xn) that occur as the first n coordinates of x ∈ X.

Theorem 2.46 (Yomdin) The entropy satisfies h(f) ≥ log σ(f), where
σ(f) is the spectral radius of f on H∗(M,R).

Theorem 2.47 (Gromov) The topological entropy of a degree d map f :
Pk → Pk is h(f) = log dk.

Proof. We make X = Pk into a metric space by taking d(x, y) to be the
distance in the Fubini-Study metric with symplectic form ω.

Consider the embedding

fn : Pk → Xn = (Pk)n

given by fn(x) = (x, f(x), . . . , fn−1(x)). Let ωi be the pullback of ω from the
ith factor of Xn, and define a Kähler metric on Xn by taking the symplectic
form

η = ω1 + · · ·+ ωn.

Note that Lelong’s theorem holds for η, since on small balls it is comparable
to a Euclidean metric.

We have f∗n(ωi) = diωi, and thus the volume of the image of fn is given
by:

Vn =

∫

Pk

f∗n(η
k) =

∫

Pk

((1 + d+ · · ·+ dn−1)ω)k =

(
dn − 1

d− 1

)k

·

Thus we have Vn ≍ dnk.
We claim that for fixed ǫ, any ǫ-separated set E in (Pk, dn) satisfies |E| =

O(Vn). To see this, note that for any pair of distinct points x, y ∈ fn(E),
we have

dη(x, y) =
(∑

d(xi, yi)
2
)1/2

≥ max d(xi, yi) > ǫ.

Thus in the metric dη , the balls

{B(p, ǫ) : p ∈ E}
are disjoint. But by Lelong’s theorem, the η-volume of f(Pk) ∩ B(p, ǫ) is
bounded below by a constant depending only on ǫ. Thus we have |E| =
O(Vn) = O(dnk), and therefore h(f) ≤ log(dk).
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Remark. The same argument show the h(f) = log(σ(f |H∗(X))) for any
endomorphism f : X → X of a compact Kähler manifold. The proof ulti-
mately relies on the fact that the graphs of all iterates of fn : X → X are
minimal surfaces, and hence the ‘simplest’ representatives of their isotopy
classes.

The proof also brings to light the importance of geometric bounds, such
as those provided by Lelong’s theorem, which apply with uniform constants
across spaces of arbitrarily large dimension. A crucial point is that the
comparison between ℓ2 and ℓ∞ metrics on a large products works, in this
case, in a favorable direction.

2.10 Equidistribution on P1

In this section we specialize again to the setting of rational maps on the
projective line. In this case of f : P1 → P1, the canonical current and
the invariant measure for f coincide: we have µf = Tf . Using the Koebe
distortion theorem, we will investigate this measure in more detail.

Theorem 2.48 (Lyubich) Let p ∈ P1 be a point whose backward orbit
consists of 3 or more points. Then we have

µn = d−n
∑

fn(z)=p

δz → µf

as n→ ∞.

In this sum points are weighted according to their multiplicities.
Once the backward orbit of p consists of 3 or more points, it is infinite.

The backward orbit contains no periodic points unless p itself is periodic.
Even in this case one may easily verify:

Lemma 2.49 Suppose p has an infinite backward orbit. Then we have

|{z ∈ f−n(p) : z is periodic}|
dn

→ 0

as n→ ∞.

Proof of Theorem 2.48. The measure µn+m is a weighted average of
the measures µm obtained from z ∈ f−n(p). The preceding Lemma then
reduces the analysis to the case where p is not periodic. Once p is aperiodic,
the sets f−n(p) are disjoint as n varies. Thus we can further reduce to the
case where the backward orbit of p contains no critical points; equivalently,
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we can assume that p 6∈ P (f). Then f−n(p) consists of dn distinct points,
each mapping to p with multiplicity one.

Choose a small ball B0 = B(p, r) and a smooth (1, 1)-form ω0 supported
in B(p, r/2) of total mass one. We have seen that ωn → µf , where ωn =
d−nf∗(ω0). We will show that when B0 is very small, ωn and µn are close
for n≫ 0.

Let Bn = f−n(B0), and let Un denote the number of components of Bn

mapping univalently to B0 by fn. At most 2d − 2 components of Bn meet
C(f), so we have

Un+1 ≥ dUn − (2d− 2).

Thus the fraction of univalent components, un = Un/d
n, satisfies

un+1 ≥ un − 2d− 2

dn+1
·

Choose N ≫ 0. By making B0 small enough, we can insure that BN

consists of dN disjoint disks, each mapping univalently to B0. That is, we
can assume un = 1. Then by induction we find:

UN+k ≥ 1−
∞∑

1

2d− 2

dN+i
≥ 1−O(d−N ).

In other words, for any n, for all but a very small percentage of the points z
in the support of µn, we have a ball B around z mapping univalently by fn

to B0. Thus ignoring the part of µn where no such B exists makes a very
small change in the measure µn.

On the other hand, the components of f−n(B0) are disjoint, so almost
all of them have small area — say area O(d−n). Ignore those points in the
support of µn lying in components of large area again makes a only a very
small change in the measure µn.

Finally, recall that ω0 is supported in the ball B(p, r/2) ⊂ B(p, r) = B0.
By the Koebe distortion theorem, if fn : B → B0 is univalent, then the
diameter of

B′ = B ∩ f−n(B(p, r/2))

is controlled by the area of B.
Summing up, to almost every point z in the support of µn, we can

associate a set B′ of small diameter such that
∫
B′ ωn = µn(B

′) and z ∈ B′.
Moving the mass of ωn fromB′ to z makes only a small change in the measure
ωn (as detected by integration against a uniformly continuous function on
the sphere).
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Thus ωn is close to µn for all n ≫ 0. But ωn → µf , so the same is true
of µn.

Corollary 2.50 The support of µf coincides with J(f).

Proof. Construct µf by the pullback procedure, starting with p ∈ J(f).

Mixing. Recall that an f -invariant probability measure µ is ergodic if
µ(E) = 0 or 1 for any Borel set E satisfying f−1(E) = E. A stronger
condition than ergodicity is mixing, which means that:

∫
φ(fn(z))ψ(z) dµ(z) →

∫
φ

∫
ψ (2.4)

for any pair of functions φ,ψ ∈ L2(Pk, µ). (To see that mixing implies
ergodicity, set φ = ψ = χE.)

Example. The map f(z) = zd, d > 1, is mixing on S1 with respect to
linear measure, as can be checked using Fourier series.

Corollary 2.51 The measure µf is mixing.

Proof. It is enough to establish equation (2.4) when φ and ψ are continuous
functions on P1. Let µn,p = d−nf∗(δp); these measures tend to µf for all
p ∈ J(f). Then we have:

∫
φ(fn(z))ψ(z) dµ(z) =

∫
φ(p)

(∫
ψ(z) dµn,p(z)

)
dµf (p).

The inner integral, which is a function of z, converges pointwise to the
constant function

∫
ψdµ. By the dominated convergence theorem, the limit

of the outer integral is then (
∫
φdµf )(

∫
ψ dµf ).

Equidistribution. The Koebe distortion theorem allows one to pass from
equidistribution of the pullbacks of a smooth form to equidistribution of
the backwards orbit of a point. A similar argument, using the ‘wavefront
lemma’, allows one to pass from mixing of the geodesic flow on a hyperbolic
manifold to equidistribution theorems for spheres and horocycles [EsM].
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2.11 Equidistribution on Pk

As another application of Lelong’s theorem, we sketch some of the ideas
behind the proof in [BD2] of:

Theorem 2.52 (Briend-Duval) There exists a proper algebraic subset E ⊂
Pk such that µf (E) = 0 and for all p 6∈ E, we have:

µf = lim d−nk
∑

fn(z)=p

δz .

Corollary 2.53 The fine Julia set Jk(f) = suppµf is the minimal, closed,
f -invariant set not contained in a proper subvariety.

Corollary 2.54 If the interior of Jk(f) = suppµf is nonempty, then Jk(f) =
Pk.

Proof. Suppose Jk(f) 6= Pk. Then its complement is a nonempty, open,
f -invariant set U . Choose a point p ∈ U whose weighted preimages converge
to µf . Since the preimages of p never enter the interior of the fine Julia set,
they deposit no charge there, so the interior must be empty.

Area and diameter. Recall that Lyubich’s proof for P1 uses the Koebe
distortion theorem. For a parallel argument in higher dimensions, we need
to show area controls diameter.

Lemma 2.55 Let h : ∆ → Pk be a holomorphic map, and let r < 1. Then
with respect to the Fubini-Study metric, we have a bound

diam(h(∆r))
2 < Cr · area(h(∆)).

Proof. Once the area is small, we have
∫
|h′|2 small. A familiar length-area

argument, based on the Cauchy-Schwarz inequality

(∫
|h′|
)2

≤
∫

1

∫
|h′|2,

and Fubini’s theorem, shows we there is an s with r < s < 1 such that

length(h(S1
s ))

2 ≤ Cr · area(h(∆)).

Thus we are done, unless we have D = diam(h(∆s)) ≫ diam(h(∂∆s)).
But in this case we can find a p ∈ ∆s such that h(∂∆s) lies outside the ball
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B(h(p),D/2) At the same time we can replace the Fubini-Study metric with
a flat metric, since we are working in a small region of Pk. Then by Lelong’s
theorem, we have

π(D/2)2 ≤ area(h(∆s) ∩B(h(p),D/2)),

so D, and hence diam(h(∆r)), are controlled by the area of h(∆).

We also need to control the area of preimages.

Lemma 2.56 Let f : Pk → Pk be a rational map of degree d. Let h :
∆ → Pk be a holomorphic disk, whose image U = h(∆) is disjoint from the
postcritical set P (f) and contained in a line L ∼= P1 ⊂ Pk. Then the average
area of a component of h−n(U) is O(d−n).

Proof. Recall that f acts by multiplication by di on H2i(Pk). Since L
represents a class in H2k−2(Pk), we have

area(f−n(U)) ≤ area(f−n(L)) = dn(k−1)

in the normalized Fubini-Study metric on Pk. But the degree of f is dk, so
f−n(U) has dnk components. Thus their average area is d−n.

Given x ∈ Pk, let

µn,x = d−nk
∑

fn(y)=x

δy

as usual. Then the preceding Lemmas easily imply:

Corollary 2.57 If U ⊂ Pk − P (f) is a linear disk, and x, y ∈ U , then
µn,x − µn,y → 0 as n→ ∞.

Sketch of the proof of Theorem 2.52. The preceding Corollary can be
enhanced to show that µn,x − µn,y → 0 so long as neither measure ‘charges
the critical set’: that is, so long as µn,x(C(f)) → 0, and similarly for y.
Then one can show that there is a proper closed algebraic subset E ⊂ Pk

such that all x that charge C(f) lie in E.
Now fix x 6∈ E and let ν be a weak limit of µn,x. We will show that

ν = µf , and hence µn,x → µf as desired.
Passing to a subsequence, we can assume µn,x → ν, and hence µn,y → ν

for any y 6∈ E.
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Let η be a unit mass smooth, positive (k, k)-form supported in a ball
disjoint from E. Assume that η = ω1 ∧ ω2 · · ·ωk where ωi are normalized
closed (1, 1)-forms. Since d−n(fn)∗(ωi) → Tf , we have ηn = d−nk(fn)∗(η) →
µf .

But as a measure, we have

ηn =

∫
µn,y dη(y).

Thus ηn → ν along a subsequence, and thus ν = µf .

Repelling cycles. Briend and Duval have shown that the smallest Lya-
punov exponent of f with respect to µf is at least (1/2) log deg(f); in par-
ticular, the support of µf is a “repeller” [BD1]. Using the fact that f is also
mixing, they show that repelling periodic points (those with all eigenvalues
of modulus > 1) are uniformly distributed with respect to µf . It would be
interesting to find a more direct proof that an endomorphism of Pk, k > 1,
always has at least one repelling periodic cycle.

2.12 Exercises

1. Prove that a the critical locus C(f) for an endomorphism of degree d
on Pk has degree (k + 1)(d − 1).

2. Verify that the map f on P2 given by equation (2.1) is critically finite,
and compute the first return map f3 : L→ L on a periodic line L ∼= P1

in the post-critical set P (f). Prove that J(f |L) = L.

3. Draw a scatter plot of f−n(z0) for f(z) = ((z − i)/(z + i))2. Give
a formula for the measure with respect to which inverse images are
distributed.

4. Using computer graphics, draw a scatter plot of f−n(z0) to approxi-
mate the equilibrium measure µ for the following quadratic polynomi-
als: (a) f(z) = z2 + i; (b) f(z) = z2 − 1; (c) f(z) = z + z2.

5. Draw pictures of the escape rate functions for the same quadratic
polynomials; that is, color or shade the complex plane according to
the value of lim 2−nlog+|fn(z)|.

6. The level sets of the escape rate function for a polynomial f(z) foliate
the attracting basin of infinity, U . Show that the same foliation can
be defined in terms of the small orbit equivalence relation, z ∼ w if
fn(z) = fn(w) for some n ≥ 0.
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7. Describe the foliation of the basin of infinity for f(z) = z2 − 100.

8. Let P (z) and Q(z) be polynomials of the same degree d > 1. What
is the Julia set of the map f : P2 → P2 given in an affine chart by
(z, w) 7→ (P (z), Q(w))?

9. What happens if the degrees of P and Q are different?

10. Compute the branch locus (critical values) of the map E2 → P2 send-
ing an elliptic curve E = C/Λ to the quotient of E2 by S2 ⋉ (Z/2)2.

11. Let V ⊂ Pk be a hypersurface defined by the homogeneous polynomial
equation P (z) = 0 on Ck+1. Show that T = ddc log |P (z)| is the
pullback of the (1, 1)-current represented by V .

12. Let f : P1 → P1 be the polynomial map f(z) = z2 + c with c outside
the Mandelbrot set. Then J(f) is a Cantor set, and there is unique
conformal metric g on P1 (up to scale) with curvature 4πµf . Parallel
transport gives a foliation F of T1P

1 by Riemann surfaces.

Show that every leaf of F has infinite genus. (Cf. [HP].)

13. Show that every domain Ω ⊂ P1 with |Ĉ−Ω| ≥ 3 is Kobayashi hyper-
bolic and hyperbolically embedded.

14. Let X = P2 −H where H is the union of the line at infinity and the
lines defined by z = 0, w = 0, w = 1 and z = w in C2 ⊂ P2.

(a) Show that X is hyperbolic. (Hint: show X is isomorphic to (C −
{0, 1})2.)
(b) Show that X is not hyperbolically embedded in P2. (Hint: consider
the Kobayashi metric on the submanifolds Lr = X∩(z = r) as r → 0.)

15. Let X = {(z, w) : |z| < 1, |zw| < 1 and |w| < 1 if z = 0}.
(a) Show that X is not Kobayashi hyperbolic, but any holomorphic
map f : C → X is constant.

(b) Let H be the hypersurface in X defined by z = 0. Show that
X −H is Kobayashi hyperbolic.

(c) Show that X−H is not hyperbolically embedded inX, even though
H is hyperbolic.

(Cf. [Ko, Example (3.6.6)].)
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16. Show that the resonant map f(x, y) = (λx, λ2y + x2), 0 < |λ| < 1, is
not linearizable at the origin in C2.

17. Show that a holomorphic 1-form θ on a compact complex surface X is
always closed. (Hint: consider

∫
dθ ∧ dθ.)

18. Show that a holomorphic form (p, 0)-form θ on a compact Kähler man-
ifold X of dimension n is always closed. (Hint: consider

∫
dθ ∧ dθ ∧

ωn−p−1.)

19. Prove Lelong’s theorem on vol(X ∩B(0, r)) when dimX > 1.

20. Consider the curve X ⊂ C2 defined by y = x2. Show that as r → ∞
we have

area(X ∩B(0, r)) ∼ 2πr2

(a) by pulling back the area form on C2 under the map t 7→ (t, t2); (b)
by equation (2.3) coming from the proof of Lelong’s theorem.

21. Let X ⊂ C2 be an affine curve of degree d. Show that we have

area(X ∩B(0, r)) ∼ dπr2

as r → ∞.

22. Let X = G/Γ be the Iwasawa manifold, where

G =
{(

1 a b
0 1 c
0 0 1

)
: a, b, c ∈ C

}
⊂ GL3(C)

and where Γ = G ∩GL3(Z[i]).

Show that X is a compact complex manifold, and that X carries a
holomorphic 1-form that is not closed.

23. Let Σ2 = (Z/2)N equipped with the shift map σ(xi) = (xi+1). Let

X = {(xi) ∈ Σ2 : ∀i ((xi, xi+1) 6= (0, 0)}
be the set of all sequences without consecutive zeros.

What is the topological entropy of σ|X?

24. Let f :M →M be a degree d self-covering map of a compact manifold
M . Prove its entropy satisfies h(f) ≥ log d.

25. Invent a interesting holomorphic map f : P2 → P2 over degree d > 1,
defined over R, and draw a contour plot of itshe natural (1, 1)-current
Tf? (This is true for k = 1 by [Ly], and for k = 2 by [FJ].)
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2.13 Unsolved problems

Let f : Pk → Pk be a holomorphic map of algebraic degree d > 1 in dimen-
sion k > 1.

1. Complete the classification of periodic Fatou components for f .

2. Can f have a wandering Fatou component? (It cannot when k = 1.)

3. Let H ⊂ Pk be a generic hyperplane. Does (fn)∗(H)/dn converge to
the natural (1, 1)-current Tf? (This is true for k = 1 by [Ly], and for
k = 2 by [FJ].)

2.14 Notes

Basic references for dynamics on Pk include [For], [FS], [Si], [HP], [Ue] and
[BD2].

The theory of currents, including Lelong’s theorem, is presented in [GH,
Ch. 3]. See [KH] for more on the notion of topological entropy.

The basic reference for the Kobayashi metric is [Ko]. See for example
[Ko, 3.5.41, p.99] for a version of Theorem 2.28 above.
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3 Dynamics of surface automorphisms

3.1 Automorphisms of curves

What is the simplest interesting dynamical system?
Let us interpret this question more precisely. By a dynamical system we

will mean a diffeomorphism of a compact manifold, f : X → X. The reason
to focus on invertible maps is that these arise as cross-section of flows, and
hence contribute to the analysis of differential equations. Indeed, Poincaré’s
original works on dynamics were motivated in part by questions of celestial
mechanics such as the 3-body problem.

A map on a real manifold can sometimes be complexified, especially
when the map is simple enough that it is given by an algebraic equation.
The complex setting is more rigid and admits more definitive tools, so we
will further require from the outset that f is a holomorphic diffeomorphism
of a compact complex manifold.

The word ‘interesting’ is subjective, but should include the requirement
that the dynamics is essentially nonlinear.

Poncelet’s iteration. Algebraic geometry provides a source of simple
dynamical systems. Here is a classical example, due to Poncelet.

Let C andD be a pair of smooth conics in RP2. For concreteness, assume
C and D are disjoint ellipses, with D encircling C.

Given a point p on the outer ellipse D, we can construct a new point
f(p) on D by drawing a tangent line to C through p and recording its new
point of intersection with D. Iterating this process, we obtain a ‘polygon’
with vertices p, f(p), f2(p), . . ., inscribed in D and circumscribed in C.

Theorem 3.1 (Poncelet) If this polygon closed for some point p ∈ D,
then it closes for all p ∈ D.

Theorem 3.2 Let X be a compact Riemann surface of genus g. Then ei-
ther:

• g = 0, we have X ∼= P1 and Aut(X) = PGL2(C) acts via linear
automorphisms; or

• g = 1, X ∼= C/Λ and Aut(X) is a compact group of Euclidean isome-
tries; or

• g ≥ 2 and Aut(X) is finite.

65



Proof. For g = 0 we have X ∼= P1 by Riemann-Roch, and hence its
automorphisms come from Möbius transformations. Note that for g = 0,
Aut(X) is not compact.

For g = dimΩ(X) > 0, one can immediately see that Aut(X) is compact,
because it preserves the Bergman metric on X.

To define this metric, note that Ω(X) carries a natural L2-norm:

‖ω‖2 =
i

2

∫

X
ω ∧ ω.

(This norm measures area of the image of X under the locally defined func-
tion f : X → C with df = ω.) From this L2 norm we obtain a metric on X
by:

‖v‖ = sup{|ω(v)| : ‖ω‖ = 1}.
(Alternatively, the L2-norm on 1-forms gives a metric on the the Jacobian
Jac(X) ∼= Ω(X)∗/H1(X,Z), which pulls back to the above metric on X
under the natural map X → Jac(X).)

In the case of genus one it is clear that the Bergman metric is the
Euclidean metric coming from the universal cover. For higher genus the
Bergman metric generally has variable curvature. On the other hand, the
automorphism group of X is discrete because χ(X) < 0, and thus by com-
pactness it is finite.

Remark. The finiteness of Aut(X) for genus g ≥ 2 can also be deduced
using the hyperbolic metric. The proof above, however, by virtue of working
with forms and the Bergman metric, also works in higher dimensions; for
example a similar argument can be applied to show Aut(X) is finite for
surfaces of general type.

3.2 Automorphisms of surfaces

Let X be a compact, connected, complex surface. We can attempt to use
sections of powers of the canonical bundle KX and its powers to find a
natural model for X as a projective variety. Let

X → Xm ⊂ PN

be the map to projective space given by the linear system |mKX |. (Here Xm

denotes the Zariski closure of the image.) Since KX is canonical, Aut(X)
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respects the map X → Xm and acts on Xm via linear automorphisms of the
ambient projective space PN .

The Kodaira dimension of X is defined by

kod(X) = max
m>0

dim(Xm).

If h0(X,Km
X ) = 0 for all m > 0, we set kod(X) = −∞.

A surface is minimal if has no rational curves E with E2 = −1. Such
a curve can always be blown down to obtain a simpler surface birationally
equivalent to X.

A fibration is a regular surjective map π : X → C where C is a smooth
curve. If the generic fiber is an elliptic curve, then X is an elliptic surface.
If all fibers are isomorphic to P1, then X is a ruled surface. Every ruled
surface has the form X = PE where E → C is a rank-two vector bundle.

Note that for ruled surface such as X = P1 × C, g(C) > 1, Km
X has no

sections at all, regardless of the sign of m.
A minimal surface is of general type if kod(X) = 2. In this case it is

known that the pluricanonical map is regular and birational for m ≫ 0,
although the image might have some double points.

We can now briefly sketch the Enriques–Kodaira classification of mini-
mal complex surfaces. Here are the possibilities, organized by the Kodaira
dimension (cf. [BPV, Ch. VI]).

1. kod(X) = −∞. (a) X ∼= P2. (b) X is ruled. (c) X has b1(X) = 1
(and hence is not projective).

A ruled surface X → C is rational iff C ∼= P1. In this case X is a
Hirzebruch surface of the form Σd = P(O ⊕ O(d)). (Since O(d) is
birationally trivial, Σd is birationally equivalent to P1 × P1 and hence
to P2.)

The Hopf surfaces,

X = (C2 − (0, 0)/z ∼ λz,

|λ| > 1, are examples of (c).

2. kod(X) = 0. (a) complex tori X = C2/Λ. (b) K3 surfaces (KX is
trivial, b1(X) = (1)). (c) surfaces finitely covered by (a) and (b).

In case (c), the only surfaces properly covered by K3 surfaces are
Enriques surfaces; for these the covering is of degree two.
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3. kod(X) = 1. These are all ‘properly elliptic’ surfaces, i.e. each admits
a canonical ‘fibration’ X → Xm

∼= C with generic fiber an elliptic
curve, but X is not covered by a complex torus.

A typical example is E×C where E is an elliptic curve and g(C) > 1.
For an example with a rational base, let C be a hyperelliptic curve
and let X be the quotient of E × C by (e, c) 7→ (e + p, η(c)), where
2p = 0 in E and where η is the hyperelliptic involution.

4. kod(X) = 2. These are surfaces of general type. They include, for
example, all smooth hypersurfaces in P3 of degree d ≥ 5.

For m large, the pluricanonical map φm : X → Xm for a surface of
general type is regular and birational, but it may not be an isomor-
phism. For example, consider a quintic hypersurface Y ⊂ P3 with a
double point, but otherwise smooth, and blow up to obtain a smooth
surface X (with a rational −2-curve). Then X has general type, but
its canonical images Xm, m ≥ 1 are all isomorphic to Y rather than
X. (Note that KY = OY (1) by the adjunction formula.)

Canonical models and automorphisms. The autmorphism group Aut(X)
respects any canonical map, and acts via automorphisms of PN on its image.
We thus have:

Theorem 3.3 If X is an algebraic surface with kod(X) > 0, then Aut(X)
acts either ‘linearly’ on X or as a skew-product over automorphisms of a
curve.

In the case of general type we can say more:

Theorem 3.4 The automorphism group of a surface of general type is fi-
nite.

Proof. There is a natural L2-norm on the space of sections of the canonical
bundle:

‖ω‖2 =
∫

X
|ω|2.

Similarly,
∫
|σ|2/m provides a natural measurement of the size of a section

σ of Km
X for m > 0. Because this size is preserved by Aut(X), we see that

for a surface of general type, Aut(X) is compact. (That is, it acts on Xm

via automorphisms of PN which preserve the size function on the space of
sections, and hence lie in a compact group.) Any compact complex subgroup
of Aut(PN ) is finite.
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It is less popular, but also useful, to try to find a model for X using
sections of negative powers of the canonical bundle. For example, if X = P2,
then we have K−1

X = O(3), and thus | −KX | gives the Veronese embedding
of P2 into P9 by the linear system of cubic curves.

In this case Aut(X) is of course not compact, but its action is linearized
by the ‘anticanonical embedding’. In other words, we have:

Theorem 3.5 If KX is ample, then Aut(X) is linearizable.

These result indicates that Aut(X) is rather uninteresting dynamically,
both when X is fairly irrational (kod(X) > 0) and when X is fairly rational
(X is an algebraic surface with kod(X) = −∞.) On the other hand, when
KX is trivial there is no hope of using the canonical bundle to forge a
projective model of X.

Theorem 3.6 (Cantat) Let f : X → X be an automorphism of a mini-
mal,compact complex surface. If f has positive entropy, then the X is either
a K3 surface, an Enriques surface or a complex torus.

Note: the minimal model of an irrational surface is canonical, so auto-
morphisms of such surfaces pass to their minimal model and are covered by
the theorem above. On the other hand, certain non-minimal rational sur-
faces do admit automorphisms of positive entropy, and these surfaces have
not yet been completely classified.

3.3 Real dynamics on K3 surfaces

K3 surfaces in P1
×P1

×P1. Let X ⊂ (P1)3 be a smooth surface of degree
(2, 2, 2). Then X is simply-connected by the Lefschetz hyperplane theorem,
and KX is trivial by the adjunction formula. Thus X is a K3 surface.

As a concrete family of examples, we consider the surfaces XA defined
by the equation

(1 + x2)(1 + y2)(1 + z2) +Axyz = 2

for A ∈ R. Each such surface carries 3 natural involutions, coming from
sheet interchange under the 2-fold projection to a coordinate plane. The
product of these involutions,

fA = ιx ◦ ιy ◦ ιz
gives a positive-entropy automorphism of XA.

Experimentally the dynamics of fA : XA(R) → XA(R) exhibits all the
features of a typical area-preserving map. In [Mak] we read:
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A few hours playing at a computer terminal is sufficient to con-
vince one that almost all area preserving maps have essentially
the same features...

Firstly, one often sees stable periodic orbits. Their stability
comes from being surrounded by closed invariant curves.

Secondly, in between some of the larger invariant circles are “is-
land chains”, strings of alternating stable and unstable periodic
points.

Thirdly, when they are large enough, one can see that they are
surrounded by a “sea of stochastic orbits”.

KAM theory. Let (X,ω) be a compact smooth surface of real dimension
two, equipped with a smooth area form ω.

Let f : X → X be a C4 area-preserving automorphism of X. If f(p) = p,
and Df |Tp is conjugate to a rotation, then p is an elliptic fixed point of f .

In suitable polar coordinates with p = 0, one can express f in Birkhoff
normal form:

f(r, θ) = (r, θ + α+ βr) + F (r, θ),

where the derivatives of F (r, θ) of order ≤ 3 all vanish. We say p is a
nondegenerate elliptic point if β 6= 0, i.e. if there is a nontrivial ‘twist’ in
the dynamics near p.

Theorem 3.7 (Kolmogorov–Arnold–Moser) Let p be a nondegenerate
elliptic fixed-point with α 6= 0,±π,±π/2,±2π/3. Then there exists a positive
measure set A ⊂ X with p as a point of density, such that A is foliated by
invariant circles on each of which f acts by an irrational rotation.

These invariant circles bound ‘elliptic islands’ which are trapped near p.
Let Diffk

ω(X) denote the space of Ck diffeomorphisms of X preserving
the area form ω.

Corollary 3.8 For k ≥ 4, having a dense orbit is not a generic condition
in Diffk(X). On the contrary, there is a nonempty open set U ⊂ Diffk(X)
such that every f ∈ U has elliptic islands.

Remark. For KAM theory see, for example, [Me, Theorem 5.1]. Oxtoby
and Ulam proved that a generic C0 area-preserving map (in the sense of
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Baire category) has a dense orbit (see [Ox]). It is not known what happens
in the Ck case for 1 ≤ k ≤ 3.

Returning to our specific examples (3.3) of area-preserving maps on sur-
faces, we can now formulate the following:

Conjectures.

1. There is an open dense set of A ∈ R such that fA : XA → XA has a
dense set of elliptic periodic points.

2. There is a positive measure set of A ∈ R such that fA : XA → XA is
ergodic and mixing.

3. So long as fA has infinite order, it has an ergodic component of positive
measure (a stochastic sea).

4. For any value of A, periodic points of fA are dense.

3.4 Topology and Hodge theory of complex tori

A complex torus is a compact complex n-manifold of the form X = Cn/L
where L ∼= Z2n is a lattice in Cn.

In dimension one, complex tori are just Riemann surfaces of genus one.
In higher dimensions a typical complex torus is not projective — its Picard
group is trivial. The projective complex tori are Abelian varieties.

Topology. A complex torus X of dimension n is homeomorphic to the
standard real torus (S1)2n. The cohomology of X is thus easily described.
Indeed, if we let L = H1(X,Z) ∼= Z2n, then we have canonical isomorphisms:

Hk(X,Z) ∼= ∧
k(L∗)

and hence bk(X) =
(2n
k

)
.

An integral basis of Hk(X) is given by the real subtori of (S1)2n of
codimension k obtained by fixing k coordinates.

Intersection form. The complex structure onX determines an orientation
of L, that is a choice of generator for ∧2nL ∼= Z.

Theorem 3.9 For n even, the intersection pairing makes Hn(X,Z) into an
even unimodular lattice of signature (k, k), where k =

(2n
n

)
.

In fact it is easy to decompose Hn(X,Z) as a direct sum of hyperbolic
planes. To do this, let (ei)

n
1 be a basis for L∗. Then as I ranges over ordered

subsets of {1, 2, . . . , n}, the elements

eI = ei1 ∧ · · · ∧ ein
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form a basis for Hn(X,Z). We have

|eI · eJ | =
{
1 if I and J are disjoint, and

0 otherwise.

Adjunction formula. For an example of the pairity of the intersection
number, consider the adjunction formula for a curve C on an Abelian surface
X: we have

deg(KC |C) = 2g(C) − 2 = C ·KC = C · (KX + C) = C2.

This shows:

Theorem 3.10 If C ⊂ X is a smooth curve of genus g, then C2 = 2g − 2.
In particular, rational curves satisfy C2 = −2 and elliptic curves satisfy
C2 = 0.

This result applies equally well to K3 surfaces; it only depends on trivi-
ality of the canonical bundle.

Stiefel-Whitney classes. On any orientable 4-manifold X, we have

C2 = w2(X) · Cmod 2

on H2(X), where w2(X) is the second Stiefel-Whitney class of TX. For a
complex manifold, we have w2(X) = c1(X)mod 2. Thus the intersection
form is also even on any complex surface with even first Chern class.

Hodge structure. A complex torus is uniquely determined by its 1-
dimensional Hodge structure.

Let L ∼= Z2n be a free abelian group, and let L∗ = Hom(L,Z) be its
dual. A Hodge structure on L means a complex splitting

L∗ ⊗ C = H1,0 ⊕H0,1

such that H1,0 = H0,1. A Hodge structure determines a unique complex
torus

X = (H1,0)∗/L ∼= Cn/L,

with a canonical isomorphism L ∼= H1(X,Z), such that the Hodge decom-
position

H1(X,C) ∼= H1,0(X)⊕H0,1(X)

agrees with the given Hodge structure on L, under the isomorphismH1(X,C) ∼=
L∗ ⊗ C.
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Orientation. It is conventional to fix an orientation of L to start out
with, and require that the Hodge structure gives a compatible orientation.
(This convention makes the space of Hodge structures connected; otherwise,
the space of Hodge structures for elliptic curves would be parameterized by
H ∪ −H.)

Canonical bundle. Since a complex torus X is a Lie group, its canonical
bundleKX is trivial. The form η = dz1 · · · dzn on Cn descends to a nowhere-
vanishing section of KX , and spans Hn,0(X) ∼= C. The (n, n)-form η ∧ η
gives a canonical volume element on X.

Middle-dimensional Hodge structure. We wish to consider surfaces
that arise as complex tori, so now assume n = 2.

Given L ∼= H1(X,Z), we have a canonical isomorphism

∧
2L∗ ∼= H2(X,Z).

The (symmetric) intersection form is given by

〈α, β〉 = α ∧ β ∈ ∧
4L∗ ∼= Z,

using the orientation of L. As we have seen above, the intersection form is
the even unimodular form with signature (3, 3).

The Hodge structure on L determines the Hodge structure on H2(X):

(
∧

2L∗
)
⊗ C = H2(X,C) = H2,0 ⊕H1,1 ⊕H0,2.

Here the summands are orthogonal for the intersection form, and satisfy
H0,2 = H2,0 and H1,1 = H1,1.

Since the holomorphic (2, 0)-form on X satisfies
∫
η∧η > 0, the intersec-

tion pairing has signature (2, 0) on H2,0 ⊕H0,2, and hence signature (1, 3)
on H1,1.

Kähler cone. Since Cn admits (many) translation-invariant Kähler met-
rics, every complex torus is a Kähler manifold.

Let H1,1(X,R) denote the space of cohomology classes represented by
closed (1, 1)-forms satisfying ω = ω. The intersection form makesH1,1(X,R)
into a Minkowski space of signature (1, 3), and hence a model for hyperbolic
space H3.

The Kähler cone CX ⊂ H1,1(X,R) consists of the cohomology classes of
sympletic forms of Kähler metrics on X.

Theorem 3.11 The Kähler cone

CX ⊂ H1,1(X,R),
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coincides with one component of the space of timelike vectors, i.e. of those
classes satisfying [ω2] > 0.

In fact, each cohomology class in H1,1(X,R) is represented by the sym-
plectic form of a unique, translation invariant Hermitian form on TX. The
signature of this form is (2, 0) or (0, 2) for timelike vectors, and (1, 1) for
spacelike vectors; it is (1, 0) or (0, 1) on the light cone. (The sign of [ω2] is
the determinant of the form.)

3.5 Dynamics on complex tori

Now let f : X → X be an automorphism of a complex torus of dimension
two. Two natural invariants of f are its determinant

δ(f) = Tr(f |H2,0)

and its leading eigenvalue λ(f), given by the spectral radius

λ(f) = σ(f |H2) = σ(f |H1,1).

(Note that f acts unitarily onH2,0⊕H0,2.) We have |δ(f)| = 1 and λ(f) ≥ 1.

Theorem 3.12 At any fixed-point p of f we have detDfp = δ(f).

Theorem 3.13 The entropy of f is given by h(f) = log λ(f).

Corollary 3.14 The map f has positive entropy iff f determines a hyper-
bolic (as opposed to parabolic or elliptic) isometry of the space H3 attached
to the Kähler cone of X.

In fact, once f is normalized to fix the origin in X = C2/L, it becomes
an automorphism of X as a group. We denote subgroup of such normalized
automorphism by Aut0(X). Upon lifting to the universal cover, we obtain
a complex linear automorphism F : C2 → C2 satisfying F (L) = L.

Let α, β denote the complex eigenvalues of F , with |α| = |β|−1 ≥ 1. We
then have:

δ(f) = αβ, and λ(f) = |α|2.
The eigenvalues of f on H1,1 are |α|±2, αβ and βα.

Salem numbers. An algebraic integer λ > 1 is a Salem number if λ is a
unit, and its conjugates other than λ±1 lie on the unit circle.

The irreducible polynomial S(t) for λ always has even degree 2d, and its
roots are invariant under t 7→ 1/t. Thus there is a corresponding Salem trace
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polynomial R(t) of degree d such that S(t) = tdR(t + 1/t). The condition
that S(t) has only two roots outside S1 translates into the condition that
R(t) one root τ = λ+ λ−1 > 2 and its remaining roots lie in [−2, 2].

Theorem 3.15 If f has positive entropy then λ(f) is a Salem number.

Proof. Since f |H2(X) preserves the integral cohomology, λ(f) is an alge-
braic integer; and it is a unit because f is invertible. Since f acts unitarily
on H2,0 ⊕ H0,2, and H1,1 has signature (1, 4), the eigenvalues of f |H2(X)
other than λ(f)±1 must lie on the unit circle.

Examples from SL2(Z). Let X = E × E be a product of two elliptic
curves. Then any element A ∈ SL2(Z) determines an automorphism fA :
X → X. Its invariants are δ(f) = 1 and λ(f) = σ(A)2.

Examples from Riemann surfaces with automorphisms. Let C be
the Riemann surface of genus two defined by y2 = x5 − 1. This C has a
symmetry g : C → C order 5, satisfying g(x, y) = (ζx, y), where ζ5 = 1.
Taking dx/y and x dx/y as a basis for Ω(X), we see g action on H1,0(X) ∼=
Ω(X) with eigenvalues (ζ, ζ2).

Now let X = Jac(C). Then we obtain a subring

ι : Z[ζ] ⊂ End(Jac(X))

by defining ι(ζ) = g. Given α ∈ Z[ζ], we let α′ denote its image under the
Galois automorphism sending ζ to ζ2; then ι(α) acts on H1,0(Jac(X)) ∼=
Ω(X) with eigenvalues α and α′.

Any unit α ∈ Z[ζ] gives an automorphism f = ι(α) of X. For example,
the golden mean γ = (1+

√
5)/2 gives an automorphism f = ι(γ) satisfying

λ(f) = γ2 and δ(f) = γγ′ = −1.

Examples from rings of algebraic integers. More generally, let

I ⊂ OK ⊂ C

be an ideal in the ring of integers in a complex extension of a real quadratic
field k. (We can also take I = OK .) Let α 7→ α′ be a Galois automorphism
of K/Q which is nontrivial on K. Then the map ι(α) = (α,α′) sends I to
a lattice L = ι(I) ⊂ C2. Since OK · I = I, we have OK ⊂ End(X) and
O∗

K ⊂ Aut(X). The units of infinite order act on X by automorphisms of
positive entropy.

Theorem 3.16 If X is projective, then δ(f) is a root of unity.
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Proof. Let S = H2(X,Z) ∩H1,1(X). If X is projective, then a hyperplane
section C provides an integral class C ∈ S with C2 > 0. Thus the signature
of S has the form (1, q) for some q ≥ 0. Clearly f |H2(X,Z) preserves S, so
it also preserves S⊥. The lattice S⊥ has signature (2, 3 − q). Now f also
preserves the positive-definite subspaceH2,0⊕H0,2 of S⊥⊗C, with signature
(2, 0), so f |S⊥ lies in a compact group of the form SO(2)× SO(3− q). But
〈f |S⊥〉 is a discrete group, since S⊥ ∼= Z5−q is a lattice. Thus f has finite
order on S⊥ ⊗ C ⊃ H2,0(X).

Synthesis of dynamics. Here is a general method for constructing exam-
ples of torus automorphisms with prescribed eigenvalues.

Theorem 3.17 Let p(t) = t4+ a1t
3+ a2t

2+ a3t+1 ∈ Z[t] be an irreducible
polynomial whose roots α,α, β, β occur in conjugate pairs. Then there exists
a complex torus X and an f ∈ Aut0(X) with p(t) = det(tI − f |H1(X)).

Proof. Realize p as the characteristic polynomial of an element F ∈ SL4(Z);
use the condition on the eigenvalues of F to construct an F -invariant split-
ting

Z4 ⊗ C = H1,0 ⊕H0,1 = H0,1

such that F acts on H1,0 by
(
α 0
0 β

)
; project the lattice Z4 to the first factor,

and let f be the induced automorphism of X = H1,0/Z4.

Examples: degree 6 Salem numbers. For any integer a ≥ 0, it is easy
to check that

P (t) = t4 + at2 + t+ 1

has only complex roots, say {α, β, α, β} with |α| > |β|. By the preceding
result, there is a complex 2-torus X and an automorphism f ∈ Aut(X) such
that

δ(f) = αβ, λ(f) = |α|2,
and P (t) is the characteristic polynomial of f∗|H1(X).

The products of pairs of distinct roots of P (t) give the roots of the
characteristic polynomial

S(t) = t6 − at5 − t4 + (2a− 1)t3 − t2 − at+ 1

of f∗|H2(X) = ∧2H1(X). Thus δ(f) and λ(f) are roots of S(t). Similarly,
τ = λ(f) + λ(f)−1 > 2 is a root of the cubic Salem trace polynomial

R(t) = (t− a)(t2 − 4)− 1.
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Figure 3. Salem trace polynomials R(t) = (t− a)(t2 − 4)− 1 for a = 0, 1, 2.

See Figure 3. (The formulas for S(t) and R(t) come from a straightforward
calculation with determinants and the companion matrix of P (t).)

Since R(−2) = R(2) = −1 while R(−1) > 0, the roots of R(t) other
than τ lie in the interval [−2, 2], and since R(n) 6= 0 for n ∈ Z, R(t) is
irreducible. Thus R(t) is a Salem trace polynomial. Therefore λ(f) is a
sextic Salem number, and S(t) is a Salem polynomial. This shows:

Theorem 3.18 For every a = 0, 1, 2 . . ., there exists a positive entropy au-
tomorphism of a complex torus f : X → X such that λ(f) and δ(f) are
roots of the Salem polynomial S(t) = t6 − at5 − t4 + (2a− 1)t3 − t2 − at+1.

Remark. It is clear that δ(f) in the examples above is not a root of
unity, since it has a conjugate λ(f) > 1. Thus the complex torus X is not
projective.

Invariant currents. From now on we assume h(f) > 0. Thus F has a pair
of distinct eigenvalues α, β on the universal cover of X. Choose coordinates
on the universal cover such that F (x, y) = (αx, βy). The forms dx and dy
descend to X, and determine a pair of closed positive (1, 1)-forms:

T+ =
i

2
dx ∧ dx and T− =

i

2
dy ∧ dy.

We will refer to the forms T± as currents, since in more general settings such
as K3 surfaces they need not be smooth.

These forms satisfy:

f∗(T±) = λ(f)±1T±.
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Thus the measure µf = T+ ∧ T− is f -invariant. In the case at hand (a com-
plex torus), the measure µf is a constant multiple of the canonical volume
element η ∧ η.

Note that [T 2
±] = 0 in cohomology — these forms lie on the boundary of

the Kähler cone, and hence on the light cone for the Minkowski form.

Dynamics on currents. When a complex torus X is actually projective
— that is, when X is an Abelian surface — it then carries lots of alge-
braic curves, giving closed, positive (1, 1)-currents. But even when X is not
projective, the Kähler cone CX gives lots of closed, positive (1, 1)-forms.

Theorem 3.19 The current T+ is the unique positive representative of its
cohomology class. Moreover T+ determines an extreme ray in the convex
cone of positive currents.

Proof. Let ω be a Kähler form on X. Recall that the mass of a closed,
positive (1, 1)-current can be defined by:

M(T ) =

∫
T ∧ ω.

Since ω is closed, the mass depends only on the cohomology class of T . The
space of closed, positive currents with M(T ) ≤M0 is compact.

Let K denote the convex set of all closed, positive (1, 1)-currents coho-
mologous to T+. All elements of K have the same mass, so K is a compact
set as well. Moreover, any T ∈ K can be uniquely expressed in the form

T = T+ + ddc(φ)

where φ belongs to L1(X) and
∫
φ = 0. (Here we integrate with respect to

the invariant volume element η ∧ η.)
Define L : K → R by L(T ) =

∫
|φ|. Then L is a bounded, continuous

function on a compact space, and hence it assumes its maximum.
Now define R : K → K by R(T ) = λ−1 ·f∗(T ). Clearly R is an automor-

phism of K, with T+ as a fixed-point. On the other hand, if T = T++dd
c(φ),

then we have
R(T ) = T+ + λ−1 · ddc(φ ◦ f).

Thus L(R(T )) = λ−1L(T ). Since the functions L(T ) and L(R(T )) have the
same maximum on K, we conclude that the maximum is zero and therefore
K reduces to the single point T+.

The extremality of T+ now follows from the extremality of its cohomology
class.
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Corollary 3.20 Let T be any closed, positive (1, 1)-current on X. Then we
have

Tn = λ(f)−n(fn)∗(T ) → αT+

for some α ≥ 0.

Proof. Since the dynamics on cohomology is hyperbolic, with expanding
eigenvector [T+], we can find an α ≥ 0 such that [αT+] = lim [Tn]. Since
X is Kähler, the mass of a positive (1, 1)-form is controlled by its coho-
mology class, so Tn accumulates on a set of positive representatives for the
cohomology class [αT+]. But αT+ is the only positive representative of its
cohomology class, so it is the limit of Tn.

Note: we have α > 0 unless T is actually proportional to T−.

Question. Which cohomology classes on the boundary of the Kähler cone
have a unique positive representative? Note: if E is the smooth fiber of an
elliptic fibration of X, then E2 = 0 and the many equivalent fibers provide
many different representatives for [E] ∈ ∂CX .

Measurable dynamics. The measure

µf = T− ∧ T+

is f -invariant, because T− and T+ scale by reciprocal factors. In fact µf
is proportional to the natural volume element η ∧ η on X, or equivalently
to the obvious Euclidean measure coming from the presentation of X as a
quotient C2/L.

Theorem 3.21 Let f be an automorphism of a complex torus X = C2/L.
If f : X → X has positive entropy, then f is ergodic and mixing with respect
to the natural invariant measure µf .

Proof. Fourier analysis gives an isomorphism between L2(C2/L) and ℓ2(L∗),
sending the unitary action of f to the linear action of

F = f∗|H1(X,Z) ∼= L∗.

Since F has no eigenvalues on the unit circle (recall its eigenvalues are
α,α, β, β with |α| > 1 > |β|), we have Fn(x) → ∞ for every x 6= 0 in L∗.
Thus if φ,ψ ∈ ℓ2(L∗) are functions with finite support, and φ(0) = ψ(0) = 0,
we have

〈φ ◦ Fn, ψ〉 = 0
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for all n sufficiently large. Since such functions are dense in ℓ2(L∗), their
transforms are dense in L2(C2/L).

We conclude that for any φ,ψ ∈ L2(C2/L) with
∫
φ =

∫
ψ = 0, we have

〈φ ◦ fn, ψ〉 → 0,

and thus f is mixing.

3.6 Topology and Hodge theory of K3 surfaces

Theorem 3.22 Let X be a K3 surface. Then we have H2(X,Z) ∼= Z22,
and the intersection form is even and unimodular with signature (3, 19).

Proof. Noether’s formula for a complex surface states:

1− q(X) + pg(X) =
c1(X)2 + c2(X)

12
·

In the case of a projective surface, this formula gives χ(OX) in terms of
topological invariants of X. Here:

• q(X) = dimΩ1(X), the irregularity of X, is the dimension of the space
of holomorphic 1-forms;

• pg(X) = dimΩ2(X), the geometric genus of X, is the dimension of the
space holomorphic sections of the canonical bundle of X;

• c1(X)2 = K2
X is the self-intersection number of a canonical divisor;

and

• c2(X) = χ(X) = 2+ b2(X)− 2b1(X) agrees with the topological Euler
characteristic of X.

For a K3 surface, we have q(X) = 0 (since b1(X) = 0), pg(X) = 1 and
c1(X)2 = 0 (since the canonical bundle is trivial). Thus c2(X) = 24, which
implies b2(X) = 22.

According to the Thom-Hirzebruch index theorem, the index of the in-
tersection form on H2(X) is given by

index(X) =
c1(X)2 − 2c2(X)

3
= −16,

so H2(X) has signature (3, 19).
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Next we check H2(X,Z) has no torsion. If it did, then H1(X,Z) would
have torsion too, so we could form a finite-sheeted cover Y → X of degree
d > 1. The canonical bundle for Y would still be trivial, so Noether’s
formula would give:

2− q(Y ) = c2(Y )/12 = d c2(X)/12 = 2d > 2,

a contradiction.
To see the intersection form is even, note that X is orientable, and its

second Stiefel-Whitney class vanishes: we have w2(X) = c1(X)mod 2 = 0.
But for any oriented surface C ⊂ X, we have a ‘mod 2 adjunction formula’:

C2 = w2(X) · Cmod2,

and thus the intersection form is even.

Corollary 3.23 The intersection form on H1,1(X) has signature (1, 19).

Corollary 3.24 The lattice H2(X,Z) is isomorphic to II3,19.

Kummer surfaces. The simplest instrinsically constructed K3 surface is
the Kummer surface X attached to a complex torus Y = C2/L.

To construct X, form the 2-fold quotient X0 = Y/ι using the involution
ι(p) = −p in the group law on Y . The 16 points Y [2] of order 2 on Y
comprise the fixed-points of ι, and give rise to double points of X0. Blowing
up these double points, we obtain the Kummer surface X. Alternatively, we
can first blowup Y [2] to obtain a surface Ŷ with 16 exceptional curves fixed
pointwise by ι. Then Ŷ admits a regular, 2-to-1 map to X. In summary, we
have a commutative diagram:

Ŷ −−−−→ X

blowup Y [2]

y
yblowup double points

Y = C/L
quotient by ι−−−−−−−−→ X0

We have b1(X) = 0 because ι acts by −1 on H1(Y,Q); there is no ι-invariant
first cohomology, and blowing up adds none.

Geometric representatives for two 2-dimensional cohomology classes of
a K3 surface are particularly transparent in the Kummer case. Each double
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point gives rise to a −2 curve on X. Also H2(Y ) is invariant under ι, so it
descends rationally to give:

H2(X,Q) ∼= H2(Y,Q)⊕Q16.

The intersection form on the first factor has signature (3, 3), as we have
seen; the second has signature (0, 16), so we obtain (3, 19) altogether.

The above rational decomposition does not correspond to an integral
splitting of H2(X,Z); instead, when intersected with H2(X,Z) we obtain
the lattices

L1 ⊕ L2 = II3,3(2)⊕ Z16(−2)

of determinant 26 and 216 respectively. (Here L(n) denotes the lattice L with
its inner form multiplied by n.) To obtain the full integral cohomology, the
lattices L1 and L2 must be ‘glued’: vectors from (L1 ⊕L2)

∗/(L1 ⊕L2) must
be adjoined to make the lattice unimodular. Compare [BPV, Ch. VIII.5].

Canonical form. The canonical form ηY = dz1 ∧ dz2 on Y descends to
give a nowhere vanishing canonical form ηX on X.

To see this, note first that ι∗(ηY ) = ηY . Thus ηY descends to a form
which is holomorphic and nonvanishing away from the −2-curves on X that
result from Y [2]. To check its behavior along one of these curves, note that
we can choose local coordinates (x, y) near the origin in Y = C2/L such
that ηY = dx dy, ι(x, y) = (−x,−y) and such that the rational map to X
is given locally by (u, v) = φ(x, y) = (x2, y/x). (Note that this map blows
up the origin. Also we do not use (y2, y/x) since the level sets y2 = 0 and
y/x = 0 are not transverse.) We then have:

φ∗(du dv) = d(x2) d(y/x) = (2x dx)(dy/x) = 2 dx dy = 2ηY .

This shows ηX is locally proportional to du dv and hence holomorphic and
nowhere zero.

Alternatively, one can first pull ηY back to Ŷ , and observe that it vanishes
to order 1 along the 16 exceptional curves there. These zeros disappear upon
passing to the 2-fold quotient X.

Kähler cone. Every K3 surface is Kähler. The Kähler cone

CX ⊂ H1,1(X,R)

is the set of all classes represented by the symplectic forms of Kähler metrics
on X. (Here VR = {v ∈ V : v = v}.)
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The shape of the Kähler cone can be made more explicit as follows. Let

∆(X) = {D ∈ Pic(X) : D2 = −2}, and

W (X) = {ω ∈ H1,1(X)R : ω2 > 0 and ω ·D 6= 0 for all D ∈ ∆(X)}.

Since the intersection form on H1,1(X)R has signature (1, 19), W (X) is the
cone over two copies of the hyperbolic space H19, with a configuration of
hyperplanes corresponding to ∆(X) deleted.

It is known that the Kähler cone CX coincides with a component or
chamber of W (X). The automorphisms of H2(X,Z) preserving the inter-
section form and Hodge structure act transitively on the set of chambers.
(Observe that such automorphisms include the reflections C 7→ C+(C ·D)D
through the hyperplanes defined by D ∈ ∆(X).)

Notes. The Kähler cone of a K3 surface is very unstable: slight deforma-
tions of X completely change Pic(X) and hence ∆(X). A complex torus
carries no rational curves, and hence no smooth −2-curves; this explains
why its Kähler cone has a simpler structure.

Torelli theorem. The Torelli theorem asserts that a K3 surface is deter-
mined up to isomorphism by its Hodge structure. More precisely we have:

Theorem 3.25 Let X and Y be K3 surfaces, and let

F : H2(X,Z) → H2(Y,Z)

be an isomorphism preserving the intersection pairing. Extend F to H2(X,C)
by tensoring with C; then:

1. If F sends H2,0(X) to H2,0(Y ), then X and Y are isomorphic.

2. If F also sends CX to CY , then F = f∗ for a unique isomorphism
f : Y → X.

Marked K3 surfaces. Next we discuss the space of all possible Hodge
structures on a K3 surface.

Let L be a fixed even, unimodular lattice of signature (3, 19). A Hodge
structure on L is a splitting

L⊗ C = H2,0 ⊕H1,1 ⊕H0,2

such that dimH2,0 = 1, H2,0 = H0,2, H2,0 ⊕H0,2 has signature (2, 0) and
H1,1 = (H2,0⊕H0,2)⊥. The space of Hodge structures on L is parameterized
by the period domain

Ω(L) = {[η] ∈ P(L⊗ C) : η · η = 0 and η · η > 0},
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via the correspondence

H2,0 ⊕H1,1 ⊕H0,2 = C · η ⊕ {η, η}⊥ ⊕ C · η.

The period domain is an open subset of a smooth, 20-dimensional quadric
hypersurface in P21.

Now let X be a K3 surface. A marking for X is an isomorphism

ι : H2(X,Z) ∼= L

preserving the intersection pairing. Every K3 surface admits a marking.
Two marked surfaces (X1, ι1), (X2, ι2) are equivalent if there is an isomor-
phism f : X1 → X2 such that ι2 = ι1 ◦ f∗.

Let M(L) be the moduli space of equivalence classes of K3 surfaces
marked by L. The period mapping

π : M(L) → Ω(L) ⊂ P(L⊗ C)

is defined by π(X, ι) = [ι(η)], where η 6= 0 is a holomorphic (2,0)-form on
X. The image of π lies in the period domain because η∧η = 0 and η ·η > 0.

The next result complements the Torelli theorem by showing all possible
Hodge structures on K3 surfaces actually arise:

Theorem 3.26 The period mapping π : M(L) → Ω(L) is surjective.

Remarks. The period mapping is not injective, because the marked Hodge
structure on H2(X) does not uniquely determine the Kähler cone CX . Note
also that the discrete group Aut(L) = O(II3,19) acts on Ω(L) with dense
orbits. In particular, Kummer surfaces are dense, and any pair of K3 surfaces
are ‘nearly isomorphic’.

For similar reasons, the moduli space of unmarked K3 surfaces, Ω(L)/O(II3,19),
does not exist as a reasonable space. This should be contrasted to the case
of Riemann surfaces, whose moduli space Mg is a variety. In the Riemann
surface case the sympletic form on H1(X,Z) provides a polarization, making
Aut(X) finite and rendering its moduli space separated.

3.7 Dynamics on K3 surfaces

Let f : X → X be an automorphism of a K3 surface X. Then f preserves
the Hodge structure on H2(X). As for tori we define

δ(f) = Tr(f |H2,0)
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and
λ(f) = σ(f |H2).

Many features of dynamics on complex 2-tori continue to hold on K3
surfaces. For example:

• The determinants at fixed-points are synchronized: we have δ(f) =
detDfp whenever f(p) = p.

(On the other hand, on a K3 surface, Tr(Dfp) is generally different for
different fixed-points.)

• If X is projective, then δ(f) is a root of unity.

• The entropy of f is given by h(f) = log λ(f).

• The intersection form makes H1,1(R) into a Minkowski space of sig-
nature (1, n), and f has positive entropy iff it determines a hyperbolic
(as opposed to elliptic or parabolic) isometry of Hn.

• If f has positive entropy, then λ(f) is a Salem number (of degree at
most 6 for 2-tori, at most 22 for K3 surfaces.)

• In the positive entropy case, there are eigenvectors ξ± in the boundary
of the Kähler cone CX ⊂ H1,1(X), satisfying

f∗(ξ±) = λ(f)±1ξ±.

• Each eigenvector is uniquely represented by a positive (1, 1)-current,
[T±] = ξ±.

• For any other closed positive current, we have

λ(f)−n(fn)∗(T ) → αT+

for some α ≥ 0.

• The measure µf = T+∧T− is f -invariant, mixing, and it is the measure
of maximal entropy for f .

Invariant currents. With one exception, the proofs of the assertions above
follow along exactly the same lines as in the case of tori; they rely mostly
on triviality of the canonical bundle.

The exception is the existence of the invariant currents T±. For complex
tori we could write these currensts down directly, using the linear form of
f . For K3 surfaces the existence is also easy, but comes from an averaging
argument.
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Theorem 3.27 (Cantat) If f has positive entropy, then there is a closed,
positive (1, 1) eigencurrent T+ 6= 0 on X such that f∗(T+) = λ(f)T+.

Proof. To construct T+, let ω be a Kähler form on X and let ωn =
λ−n(fn)∗(ω). After suitably scaling the eigenclass, we have [ωn] → ξ+ in
H2(X).

Recall that the mass of a closed, positive current can be defined by
M(α) =

∫
α ∧ ω; it depends only on the cohomology class [α]. Since [ωn] is

bounded in H2(X), the mass of ωn is uniformly bounded.
Let T+ be any accumulation point of the currents TN = (1/N)

∑N
1 ωn.

Since [T+] = ξ+ on the level of cohomology, we have T+ 6= 0. By construction
we have

f∗(TN ) = λ(f)TN +
λ(f)(ωN+1 − ω1)

N
.

The fraction above tends to zero since M(ωn) is bounded; thus f∗(T+) =
λ(f)T+.

Examples from Kummer surfaces. Let Y = C2/L and let X be the
Kummer surface associated to Y . Then any automorphism F ∈ Aut0(Y )
(fixing z = 0) commutes with z 7→ −z, and hence induces an automorphism
f : X → X.

The isomorphism:

H2(X,Q) ∼= H2(Y,Q) ∼= QY [2]

relates the action of f to the action of F . Thus we have δ(f) = δ(F ) and
λ(f) = λ(F ). The action of f on the final 16-dimensional factor is simply a
permutation representation. Since (X, f) is a measurable quotient of (Y, F ),
we have:

Theorem 3.28 Let f : X → X be a positive entropy automorphism of a
Kummer surface, arising from an automorphism of a complex torus. Then
f is ergodic and mixing for Lebesgue measure on X.

Examples from surfaces of degree (2, 2, 2). Let X be a (2, 2, 2)-
hypersurface in P1 × P1 × P1 as before. Projections to coordinate axess
present X as an elliptic fibration over P1 in 3 different ways. Thus the
Picard group Pic(X) contains at least the subgroup

S = ZE1 ⊕ ZE2 ⊕ ZE3 ⊂ H1,1(X,R)
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generated by 3 different elliptic fibers. For i 6= j, we have Ei · Ej = 2 since
Ei ∩ Ej coincides with the intersection of X with a coordinate line. Thus
the intersection pairing on S has matrix

(Ei · Ej) =




0 2 2

2 0 2

2 2 0




with signature (1, 2).
Thus the projectivization of S ⊗ R contains a hyperbolic plane H. The

elliptic curves Ei give 3 points in ∂H and determine an ideal triangle T .
The 3 involutions on X described before are nothing more than reflections
through the sides of T .

For example, the reflection that fixes E1 and E2 sends E3 to 2(E1+E2)−
E3, as can be verified using the fact that the intersection form is preserved.
That is, its action on S is given by the matrix:

ι3 =




1 0 2

0 1 2

0 0 −1


 .

Taking the product of 3 such matrices, we find that

f = ι1 ◦ ι2 ◦ ι3 =




−1 −2 −6

2 3 10

2 6 15




has eigenvalues (−1, λ, λ−1) with λ = 9+4
√
5. Thus its entropy is given by

h(f) = log(9 + 4
√
5). (Note: λ = γ6 where γ = (1 +

√
5)/2 is the golden

ratio.)

Siegel disk examples. Let us say a linear map F (z1, z2) = (λ1z1, λ2z2) is
an irrational rotation if |λ1| = |λ2| = 1 and F has dense orbits on S1 × S1.
A domain U ⊂ X is a Siegel disk for f if f(U) = U and f |U is analytically
conjugate to F |∆2 for some irrational rotation F . (Here ∆ = {z : |z| < 1}.)

Like an elliptic island on X(R), a Siegel disk on X is an obstruction to
ergodicity and to the existence of dense orbits. In the next section we will
show:

Theorem 3.29 There exist K3 surface automorphisms with Siegel disks.
Every such automorphism has positive entropy and resides on a non-projective
K3 surface.
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Differences between K3 surfaces and complex tori.

1. Form of the currents. For complex tori we can write explicit formulas
for the currents T±; in general this is impossible on a K3 surface.

2. Invariant curves. On a complex torus, an automorphism of positive
entropy has no invariant curves. On the other hand, such an automor-
phism of a K3 surface can have many invariant curves. For example,
in the Kummer surface construction we obtain 16 smooth rational −2-
curves satisfying f(C) = C. (Any invariant curve must have C2 < 0).

3. Invariant measure. For a complex torus, the dynamical measure µf
agrees with the invariant Lebesgue measure η ∧ η up to scale. This
property is shared by the Kummer surface examples, but fails in the
presence of Siegel disks, because µf is supported on J(f).

4. Julia set. We have J(f) = C2/L for any positive entropy map on a
complex torus. On the other hand in the Siegel disk examples we have
J(f) 6= X.

Conjecture 3.30 Let f : X → X be a positive-entropy automorphism of a
general K3 surface. Then J(f) = X iff X has no Siegel disks.

In particular, J(f) = X if X is projective.

Conjecture 3.31 Let f : X → X be a positive entropy automorphism of
a K3 surface. Then µf is singular with respect to Lebesgue measure, unless
X is a Kummer surface and f comes from an automorphism of a complex
torus.

Cantat has shown that the stable manifold Wp
∼= C ⊂ X of a hyperbolic

fixed-point p ∈ X is uniformly distributed with respect to the current T+.
The speculation that µf is singular with respect to Lebesgue measure is
supported in part by the picture of the real points of the stable manifold,
Wp(R), in Figure 4. (The point p is in the center of the picture.)

This image suggests that Wp(R) is very unevenly distributed on X(R),
and hence the current T+ is transversally very singular. The measure µf =
T− ∧ T+ is therefore also likely to be singular.

We remark that for rational maps f on P1, Zdunik has shown that µf
is absolutely continuous with respect to Lebesgue measure iff f is a Lattès
example [Zd]. See also [Be] for related results on Pk.

Lyapunov exponent. It would be interesting to numerically calculate
the Lyapunov expansion factor of f : X → X with respect to normalized
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Lebesgue measure ν. If f happens to be ergodic with respect to ν, then this
expansion factor is given by:

Λ(f, ν) = lim
n→∞

‖(Dfn)p‖1/n

for almost every p ∈ (X, ν). Here the norm of the derivative can be measured
with any smooth metric on X.

In the Kummer surface examples, we have Λ(f, ν)2 = λ(f). We also
have Λ(f, µf )

2 = λ(f) quite generally (Cantat). Thus a difference between
these exponents would also indicate that µf is singular with respect to ν.

Figure 4. The stable manifold of a hyperbolic fixed-point for a K3 surface

automorphism.

3.8 Siegel disks on K3 surfaces

In this section we conclude our discussion of K3 surfaces by sketching a
construction from [Mc2]. This construction shows there exist K3 surface
automorphisms with positive entropy that are not ergodic.

Siegel disks. Let us say a linear map F (z1, z2) = (λ1z1, λ2z2) is an irra-
tional rotation if |λ1| = |λ2| = 1 and F has dense orbits on S1 × S1. A
domain U ⊂ X is a Siegel disk for f if f(U) = U and f |U is analytically
conjugate to F |∆2 for some irrational rotation F . (Here ∆ = {z : |z| < 1}.)

Like an elliptic island on X(R), a Siegel disk on X is an obstruction
to ergodicity and to the existence of dense orbits. The main result of this
seciton is:

Theorem 3.32 There exist K3 surface automorphisms with Siegel disks.
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Every such automorphism has positive topological entropy.
Unfortunately, these Siegel disks are invisible to us: they live on non-

projective K3 surfaces, and we can only detect them implicitly, through
Hodge theory and dynamics on the cohomology. Indeed, we have:

Theorem 3.33 There are at most countably many K3 surface automor-
phisms with Siegel disks, up to isomorphism; and there are no Siegel disks
on projective K3 surfaces.

Synthesis of automorphisms. The next theorem provides the key to
building examples of K3 surface automorphisms. It reduces the construction
of automorphisms to a problem in integral quadratic forms. It also represents
the first step towards determining which Salem numbers can arise as λ(f).
For more progress in this direction, see [GM].

Theorem 3.34 (Synthesis) Let F : L → L be an automorphism of an
even, unimodular lattice of signature (3, 19). Suppose S(t) = det(tI − F ) is
a Salem polynomial. Then there is:

• A K3 surface automorphism f : X → X, and

• A marking ι : H2(X,Z) → L, such that F = ι ◦ f∗ ◦ ι−1.

Proof. Since F has only two eigenvalues off the unit circle, while the
signature of L is (3, 19), there exists an eigenvector η ∈ L ⊗ C such that
T (η) = δη, |δ| = 1 and η · η > 0. By surjectivity of the period mapping
(Theorem 3.26), there exists a K3 surfaceX and a marking ι : H2(X,Z) → L
such that ι(H2,0(X)) = C · η.

Let T : H2(X,Z) → H2(X,Z) be the automorphism given by T =
ι−1 ◦F ◦ ι. Then T respects the intersection paring and the Hodge structure
on H2(X), and its characteristic polynomial is also S(t).

We claim that Pic(X) = 0. Indeed, since S(t) is irreducible, T has no
proper rational invariant subspace, and thus H1,1(X) ∩H2(X,Z) = (0). In
particular, ∆(X) = ∅, so the Kähler cone CX ⊂ H1,1(X)R is simply one of
the two components of the space W (X) = {ω : ω2 > 0}.

Since the leading eigenvalue of T is a Salem number λ > 1, T does not
interchange the components of W (X), and therefore T (CX) = CX . By the
Torelli theorem (Theorem 3.25), there is a unique automorphism f : X → X
such that f∗|H2(X,Z) = T .
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Remarks. The marked K3 surface X constructed above is unique up to
complex conjugation. (We can replace η with η, thereby swapping H2,0 with
H0,2.) Note that X is non-projective, since Pic(X) = (0).

Construction of automorphisms. Here is a sketch of the construction
of K3 surface automorphisms with Siegel disks.

1. Let λ > 1 be a degree 22 Salem number with minimal polynomial
S(x) ∈ Z[x]. Our first goal is to construct a K3 surface automorphism
f : X → X such that λ(f) = λ and S(x) is the characteristic polyno-
mial of f∗|H2(X).

2. Let B = Z[y]/(S(y)), and let K be the field of fractions of B. Let
U(x) be a unit in the subring of B generated by x = y + y−1. We
make B into a lattice by defining the inner product

〈g1, g2〉B(U) = TrKQ

(
U(x)g1(y)g2(y

−1)

R′(x)

)
, (3.1)

where R(x) is the minimal polynomial of λ+λ−1. Assuming |S(±1)| =
1 (that is, λ is unramified) and U is suitably chosen, the above inner
product makes B(U) into an even, unimodular lattice of signature
(3,19).

3. Let F : B → B be multiplication by y. Then F is an isometry of the
lattice B(U).

By the synthesis construction, Theorem 3.34, there is an automor-
phism f : X → X of a K3 surface X, marked by B(U), such that the
diagram:

B(U)
F−−−−→ B(U)

y
y

H2(X)
f∗

−−−−→ H2(X)

commutes. Thus λ(f) = λ and δ(f) is a particular conjugate of λ.
The fixed-points of f are isolated because the only subvarieties of X
are points.

4. Now suppose the trace of λ is −1. Thus f has a unique fixed-point
p ∈ X, since its Lefschetz number is given by

L(f) = Tr f∗|(H0 ⊕H2 ⊕H4) = 1− 1 + 1 = 1.
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From the Atiyah-Bott fixed-point formula we also obtain:

1

det(I −Dfp)
=

1

1− TrDfp + δ
=

s=2∑

0

(−1)s Tr f∗|H0,s(X)

= 1 + δ.

Using the fact that |δ| = 1, we then get:

TrDfp =
1 + δ + δ2

1 + δ
·

We already know that detDfp = δ. Thus the eigenvalues α, β of Dfp
are determined by δ.

5. For suitable values of δ, Dfp is an irrational rotation. That is, its
eigenvalues α, β lie on S1 and are multiplicatively independent, mean-
ing

αi = βj ⇐⇒ (i, j) = (0, 0).

The eigenvalues lie on S1 if τ = δ + δ−1 > 1 − 2
√
2, and they are

multiplicatively independent if τ has a conjugate τ ′ < 1− 2
√
2.

6. Assume now that the algebraic numbers α and β are multiplicatively
independent. Then they are jointly Diophantine, by a result of Fel’dman.
That is, there exist C,M > 0 such that

|αiβj − 1| > C(|i|+ |j|)−M

for all (i, j) 6= (0, 0). The proof uses transcendence theory and the
Gel’fond-Baker method.

7. By a result of Siegel and Sternberg, once the eigenvalues of Dfp are
jointly Diophantine, f is locally linearizable. We conclude that f has
a Siegel disk centered at p.

8. To complete the construction, we must exhibit unramified degree 22
Salem polynomials S(x) of trace −1, and units U(x), such that the root
δ of S(x) satisfies the bounds required in step 5. We note that Salem
numbers with trace −1 are rather rare; there are only finitely many
such numbers of degree 22, and there are no known Salem numbers of
trace < −1. Explicit examples are found by a computer search.
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Lattices and number rings. Here is a more complete explanation of the
formula (3.1) for the inner product space B(u).

Lattices occur naturally in number rings. For example, let K be a num-
ber field of degree d over Q, and let L = OK

∼= Zd be its ring of integers.
Then L becomes a lattice with the inner product

〈x, y〉L = TrKQ (xy).

This lattice is never unimodular (unless K = Q). Given a basis (xi) for
L, the quantity D = detTr(xixj) is both the determinant of L and the
discriminant of K/Q.

Let r(x) ∈ Z[x] be a degree d irreducible monic polynomial with roots
(xi)

d
1 in C. Let A be the integral domain Z[x]/r(x) and let k be its field of

fractions. Define an inner product on A by

〈f1, f2〉A = TrkQ

(
f1(x)f2(x)

r′(x)

)
=

d∑

1

(
f1(xi)f2(xi)

r′(xi)

)

(where r′(x) = dr/dx).
As was known to Euler, this inner product takes values in Z and makes

A into a unimodular lattice. To prove this, one can use the residue theorem
to compute:

〈1, xn〉A =
∑

Res(xn dx/r(x), xi)

= −Res(xn dx/r(x),∞) =

{
0, 0 ≤ n < deg(r)− 1

1, n = deg(r)− 1;

compare [Ser1, §III.6].
Invariant forms. Now suppose x2 − 4 is not a square in k. Let K = k(y)
be the quadratic extension of k obtained by adjoining a root of the equation

y +
1

y
= x.

Let s(y) ∈ Z[y] be the degree 2d minimal polynomial for y over Q. Regarding
K ∼= Q[y]/(s(y)) as a space of polynomials in y, let F : K → K be the
multiplication map

F (g(y)) = y · g(y).
Then s(y) is the characteristic polynomial for F as a linear endomorphism
of K/Q.
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We will construct a lattice B ⊂ K such that F is an isometry of B. For
the underlying group, we take

B = Z[y]/(s(y)) = A⊕Ay ⊂ K.

Then F (B) = B.
The Galois group of K/k is generated by σ(y) = 1/y. Clearly Bσ = B,

and the trace map

TrKk (g) = g + gσ = g(y) + g(y−1)

sends B into A. We make B into a lattice by defining the inner product:

〈g1, g2〉B = 〈1,TrKk (g1g
σ
2 )〉A = TrKQ

(
g1g

σ
2

r′(x)

)
.

Then F : B → B is an isometry, because

F (g1)F (g2)
σ = (yg1(y))(yg2(y))

σ = yg1(y)y
−1g2(y

−1) = g1g
σ
2 .

Unimodularity. Our main concern is with automorphisms of unimodular
lattices. Thus it is of interest to compute the discriminant of B.

Theorem 3.35 The lattice B is even, with discriminant satisfying

|disc(B)| = |Nk
Q(x

2 − 4)| = |r(2)r(−2)|.

Here Nk
Q : A→ Z is the norm map, defined by Nk

Q(f) =
∏d

1 f(xi).

Proof. The inner product on A makes A2 into a unimodular lattice as well.
Define Q : A2 → A2 by

Q(a, b) =

(
2 x

x 2

)(
a

b

)
·

Then for a+ by ∈ A⊕Ay = B we have

(a+ by)(a+ by)σ = a2 + b2 + abx,

and therefore

〈a+ by, a+ by〉B = 2〈1, a2 + b2 + abx〉A = 〈Q(a, b), (a, b)〉A2 .

Thus B is even, and we have

|disc(B)| = |det(Q)| = |Nk
Q(4− x2)| = |Nk

Q(2− x)Nk
Q(2+ x)| = |r(2)r(−2)|,

since Nk
Q(n− x) = r(n).
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Corollary 3.36 The following conditions are equivalent: (a) B is an even,
unimodular lattice; (b) y + 1 and y − 1 are units in B; (c) x+ 2 and x− 2
are units in A; (d) |r(±2)| = 1; (e) |s(±1)| = 1.

Proof. Use the fact that NK
Q (y ± 1) = Nk

Q(x± 2).

Twisting by a unit. Let u ∈ A× be a unit in A. Then multiplication by
u is a symmetric automorphism of A with determinant ±1, so the lattice
A(u) with inner product

〈f1, f2〉A(u) = 〈uf1, f2〉A
is still unimodular. Similarly, the lattice B(u) with inner product

〈g1, g2〉B(u) = 〈ug1, g2〉B
is still even, with |disc(B(u))| = |disc(B)|; and F : B(u) → B(u) is still an
isometry, since uσ = u.

Signature. In general the signature of B(u) varies with the unit u. To
calculate the signature, first observe that the lattice B(u) determines a Her-
mitian inner product on B(u)⊗ C. Using the fact that F : B(u) → B(u) is
an isometry, we obtain an orthogonal, F -invariant decomposition

B(u)⊗ C =
⊕

r(τ)=0

E(τ),

where E(τ) = Ker(F + F−1 − τI) is 2-dimensional, and the eigenvalues
λ, λ−1 of F |E(τ) satisfy λ+ λ−1 = τ .

Theorem 3.37 Let τ be a zero of r(x). For τ ∈ R, the subspace E(τ) ⊂
B(u)⊗ C has signature

(2, 0) if |τ | < 2 and u(τ)r′(τ) > 0;

(0, 2) if |τ | < 2 and u(τ)r′(τ) < 0; and

(1, 1) otherwise.

For τ 6∈ R the subspace E(τ)⊕ E(τ ) has signature (2, 2).

Proof. First suppose τ ∈ R. Then using the isomorphism B = A+Ay ∼= A2

as in Theorem 3.35, we find the Hermitian inner product on E(τ) ∼= C2

comes from the complexification of the quadratic form

q(a, b) = 2u(τ)(a2 + b2 + abτ)/r′(τ)
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on R2. The signature of the form (a2+ b2+abτ) is (1, 1) if |τ | > 2 and (2, 0)
if |τ | < 2. The signature of q(a, b) is the same, unless u(τ)/r′(τ) < 0, in
which case it is reversed.

Now suppose τ 6∈ R, and let S ⊂ E(τ) ⊕ E(τ) be the span of the (λ, λ)
eigenvectors for F , where λ + λ−1 = τ . Since τ 6∈ R, λ is distinct from
both λ and λ−1; therefore S is a 2-dimensional isotropic subspace, and thus
E(τ) ⊕ E(τ) has signature (2, 2).

Corollary 3.38 The lattice B(u) has signature (d, d) + (p,−p) + (−q, q),
where p is the number of roots of r(x) in [−2, 2] satisfying u(τ)r′(τ) > 0,
and q is the number satisfying u(τ)r′(τ) < 0.

Dynamics from Salem polynomials. Recall that a monic irreducible
polynomial S(x) ∈ Z[x] is unramified if |S(±1)| = 1. A more complete
development of the construction above, appealing to class field theory, leads
to the following results [GM]:

Theorem 3.39 Let F ∈ SOp,q(R) be an orthogonal transformation with ir-
reducible, unramified characteristic polynomial S(x) ∈ Z[x] . If p ≡ qmod 8,
then there is an even unimodular lattice L ⊂ Rp+q preserved by F .

Corollary 3.40 Let S(x) be an unramified Salem polynomial of degree 22,
and let δ ∈ S1 be a root of S(x). Then there exists:

• A complex analytic K3 surface X, and an automorphism f : X → X,
such that

• S(x) = det(xI − f∗|H2(X)) and

• f∗ acts on H2,0(X) by multiplication by δ.

Corollary 3.41 There are no unramified Salem numbers of degree 22 and
trace less than −2.

From Salem numbers to automorphisms. Consolidating the preceding
results, we can now give

– a general construction of K3 surface automorphisms from unramified
Salem numbers, and

– a criterion for the resulting automorphism to have a Siegel disk.
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Theorem 3.42 Let R(x), U(x) ∈ Z[x] be a pair such that:

• R(x) is an unramified degree 11 Salem trace polynomial;

• U(x) represents a unit in Z[x]/(R(x)); and

• there is a unique root τ of R(x) in [−2, 2] such that U(τ)R′(τ) > 0.

Then there exists a K3 surface automorphism f : X → X such that

• δ(f) + δ(f)−1 = τ , and

• S(x) = det(xI − f∗|H2(X)),

where S(x) is the degree 22 Salem polynomial associated to R(x).

Note that S(x) = x11R(x+ x−1).

Proof. The trace-form construction yields a lattice automorphism F :
B(U) → B(U) with characteristic polynomial S(x). Since R(x) is unrami-
fied, B(U) is an even, unimodular lattice, with signature (3, 19) by Corollary
3.38.

Using the Torelli theorem, surjectivity of the period mapping, and unique-
ness of the even unimodular (3,19) lattice, Theorem 3.34 (Synthesis) yields a
K3 surface automorphism f : X → X and a marking ι : H2(X,Z) → B(U)
such that F = ι ◦ f∗ ◦ ι−1. Thus S(x) is also the characteristic polynomial
of f∗|H2(X).

By Theorem 3.37, the eigenspaces of F + F−1 are 2-dimensional, and

E(τ) = Ker(F + F−1 − τI) ⊂ B(U)⊗ C

is the unique eigenspace of F+F−1 with signature (2, 0). Similarly, H2,0(X)⊕
H0,2(X) ⊂ H2(X) is the unique eigenspace of f∗ + (f∗)−1 with signature
(2, 0). Thus ι−1(E(τ)) = H2,0(X)⊕H0,2(X) and therefore δ(f)+δ(f)−1 = τ .

Traces. The trace of a monic polynomial P (x) = xd + a1x
d−1 + · · ·+ ad is

−a1, the sum of its roots. The traces of R(x) and S(x) agree and coincide
with Tr(f∗|H2(X)). Continuing from the previous result, the Atiyah-Bott
fixed-point theorem plus results from transcendence theory imply:

Theorem 3.43 Suppose in addition that R(x) and τ satisfy:

• The trace of R(x) is −1,
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• τ > 1− 2
√
2 = −1.8284271 . . ., and

• R(x) has a root τ ′ < 1− 2
√
2.

Then f has a unique fixed-point p ∈ X, and p is the center of a Siegel disk.

Detailed example. We conclude with a specific example of a K3 surface
automorphism with a Siegel disk. This example was constructed using an
intensive computer search.

Consider the degree 22 Salem number λ ≈ 1.37289, whose irreducible
polynomial is:

S(x) = 1 + x− x3 − 2x4 − 3x5 − 3x6 − 2x7 + 2x9 + 4x10 + 5x11

+4x12 + 2x13 − 2x15 − 3x16 − 3x17 − 2x18 − x19 + x21 + x22.

The corresponding Salem trace polynomial, satisfied by λ+ λ−1, is

R(x) = −1− 8x+ 24x2 + 42x3 − 54x4 − 66x5 + 40x6 + 42x7 − 11x8

−11x9 + x10 + x11.

Note that both polynomials have trace −1 and are unramified — for exam-
ple, R(±2) = −1. The graph of R(x), displaying its 11 real roots, is shown
in Figure 5. All roots except λ+ λ−1 ≈ 2.10128 lie in [−2, 2], as required.

-2 -1 1 2

-4

-2

2

4

Figure 5. Graph of the degree 11 Salem trace polynomial R(x).

A unit compatible with R(x) is given by

U(x) = −2x+ 6x3 − 5x5 + x7.
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To verify that U(x) ∈ Z[x]/(R(x)) is a unit, one can check that |detU(MR)| =
1, where MR is the 11 × 11 companion matrix of R.

There is a unique root τ ≈ −1.66716 of R(x) in [−2, 2] with R′(τ)U(τ) >
0.

Thus the lattice B(U) has signature (3, 19), and we obtain a correspond-
ing K3 surface automorphism f : X → X. By Theorem 3.43 above, the map
f has a unique fixed-point p, and a Siegel disk centered at p.

Salem numbers of negative trace. We remark that Salem numbers
with negative trace seem to be rather rare. Among the 630 degree 22 Salem
polynomials with coefficients satisfying |ai| ≤ 1, 596 have trace 1, 33 have
trace 0 and only one has trace −1, namely

S(x) = 1 + x− x3 − x4 − x5 − x6 − x7 − x8 − x9 − x10 − x11

−x12 − x13 − x14 − x15 − x16 − x17 − x18 − x19 + x21 + x22.

On the other hand, Smyth has shown there exist infinitely many Salem
numbers with trace −1 [Smy]. McKee and Smyth have recently (2001)
constructed a Salem number of degree 1278 and trace -2; its value is λ ≈
5− 0.29514 · 10−45. See [MRS] for related developments.

3.9 Appendix: Lattices

Definitions. A lattice L ∼= Zn is a finitely-generated free abelian group,
equipped with a symmetric bilinear form or inner product L× L → Z. We
denote the inner product by 〈x, y〉L = x · y and write x2 = x · x for the
associated quadratic form. Given a basis ei for L, the matrix of the lattice
is given by aij = 〈ei, ej〉. The determinant of L is det(L) = det(aij).

The inner product determines a natural map L → L∗ = Hom(L,Z). A
lattice is unimodular if we have L ∼= L∗. We have |L∗/L| = |det(L)|, so
unimodularity is equivalent to determinant ±1. A lattice is even if its inner
product assumes only even values; otherwise it is odd.

Cohomology. Let M2n be a closed, oriented manifold, such that L =
Hn(M,Z) is torsion-free. Then by Poincaré duality, cup-product makes L
into a unimodular lattice.

Odd unimodular lattices. The most basic odd lattice is Zn with the
usual inner product. More generally, we let Zp,q denote the odd unimodular
lattice of rank n = p+ q with L = Zn and with quadratic form

x · x = x21 + · · ·+ x2p − x2p+1 − · · · − x2p+q
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of signature (p, q).

Even unimodular lattices. The most basic even unimodular lattice is
the ‘hyperbolic plane’ H ∼= Z2 with quadratic form (x, y)2 = 2xy. It has
signature (1, 1).

Here is procedure to construct an even unimodular lattice L′, starting
from the odd unimodular lattice L = Zp,q.

First, note that the map L→ Z/2 given by x 7→ x2 is a homomorphism.
Its kernel L0 is a lattice of index two in L; thus |det(L0)| = 4, and G =
L∗
0/L0 is an abelian order 4.
It is not hard to check that G is Z/4 when n = p+ q is odd and (Z/2)2

when n is even. When G = Z/4, the image of L in G is the unique subgroup
of order 2.

When G = (Z/2)2, there are 3 subgroups L,L′, L′′ ⊂ L∗
0 mapping to the

three subgroups of index two in G. The subgroup L′ can be taken to be
generated by L0 and the single vector v = (1/2)n = (1/2, . . . , 1/2). We have
v · v = (p− q)/4. Thus L′ is again a lattice when p = qmod 4. Moreover L′

is unimodular, because both it and L contain L0 with index two. Finally L′

is even when p = qmod8, and odd otherwise.
When one starts with the definite lattice Zn, resulting new lattices are

usually denoted Dn = L0 and D+
n = L′. The lattice Dn is defined for

any n and consists of those x ∈ Zn with
∑
xi = 0mod 2. The lattice

D+
n is defined when n = 0mod 4, and is generated by Dn and the vector

(1/2)n = (1/2, 1/2, . . . , 1/2).

The lattice E8. We have D+
4

∼= Z4 as a lattice. However D+
8 is a new

lattice, usually denoted E8. It is the unique even, unimodular lattice of rank
8.

The lattice D+
12 is also interesting; it is an odd unimodular lattice whose

shortest odd vector x = (1/2)12 satisfies x · x = 3, so it is distinct from Z12

and from E8 ⊕ Z4. Finally D+
16 gives an even unimodular lattice of rank

16, distinct from E2
8 . (These lattices have the number of vectors of each

given length, and hence the same θ-function. By considering the quotient
tori R16/L, L = D+

16 and L = E8, Milnor constructed the first example of
manifolds which are isospectral but not isometric.)

When starting with the indefinite lattice Zp,q, p = qmod8, the resulting
even unimodular lattice is denoted IIp,q.

Classification of unimodular lattices.

Theorem 3.44 There exists a definite even unimodular lattice of rank n iff
n = 0mod 8. There number of such lattices up to isomorphism is (1, 2, 24, . . .)
in ranks (8, 16, 24, . . .).
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Theorem 3.45 There is a unique odd indefinite unimodular lattice Ip,q with
a given signature (p, q).

Theorem 3.46 There exists an even indefinite lattice IIp,q of signature
(p, q) iff p = qmod8, in which case it is unique.

Example. There are two even, unimodular lattices of signature (16, 0), but
only one of signature (17, 1). Thus we have

E8 ⊕ E8 ⊕H ∼= D+
16 ⊕H.

This isomorphism reflects the fact that the hyperbolic orbifoldH17/SO(II17,1)
has two cusps.

Roots and reflections. A basic source of symmetries of a lattice L are
its roots, i.e. those vectors x ∈ L such that x2 is ±1 or ±2. For any such
vector, the map ρ : L→ L given by

ρ(y) = y − 2〈x, y〉
〈x, x〉 x

is an isometry of order 2, given geometrically by reflection in the plane
normal to x.

When L is definite, reflections in its roots generates a finite Coxeter
group. The indefinite, unimodular lattices have infinitely many roots, which
generate groups whose rich structure is only partly understood.

3.10 Exercises

1. Let C and D be a pair of ellipses in RP2, defined by x2 + y2 = 1
and ax2 + by2 = 1 respectively. Let µ be the invariant measure on C
for Poncelet’s iteration. Show the projection of µ to the real axis is
proportional to:

dx√
|1− x2| · |ax2 + b(1− x2)− 1|

∣∣∣∣∣
[−1,1]

(Hint: consider the meromorphic quadratic differential on C with poles
at the 4 points C ∩D.)

2. Assume D is an ellipse enclosing C. Then we can regard C as a subset
of the Klein model for the hyperbolic plane bounded by D. Show that
the invariant measure on C is proportional to arclength on C.
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3. Prove that a compact complex Lie subgroup of PGLn(C) is finite.

4. Prove that a complex torus cannot arise as a smooth hypersurface in
P3.

5. Let X be the surface resulting from the singular quadric x2+y2 = t2 in
P3 by blowing up the double point at the origin. Show thatX is a ruled
surface isomorphic to the Hirzebruch surface Σ−2 = P(O ⊕O(−2)).

6. Let X = Jac(C) where C is the surface of genus two given by y2 = x5−
1. Give a description of X as C2/L for an explicit lattice L ⊂ C2. Find
the sympletic form on L coming from the isomorphism L ∼= H1(X,Z).

7. Let fA : X → X be the positive entropy automorphism of a product
of elliptic curves, X = E × E, determined by a hyperbolic matrix
A ∈ SL2(Z). Show that f has a nonzero fixed-point in Pic(X). (Hint:
consider the Z3 subgroup in Pic(X) spanned by E × 0, 0×E and the
diagonal.)

8. Show that a positive entropy automorphism of a complex torus cannot
have any invariant curve (satisfying f(C) = C).

9. Give an example of an elliptic curve such that Pic(E×E) is isomorphic
to Z4.

10. Let E be the elliptic curve y2 = x3 − 1. Define a map φ : E × E →
X ⊂ (P1)3 by φ(p, q) = (x(p), x(q), x(r)), where r is the third point of
intersection of the line pq with E.

Show that X is a (2, 2, 2)-surface and find its equation. How is X
related to the Kummer surface for E × E?

11. Describe the Kähler cone CX ⊂ H1,1(R) for a generic (non-algebraic)
Kummer surface.

12. Prove that any fixed-point free automorphism f of a K3 surface acts
on H2,0(X) by −1. Conclude that f2 has a fixed-point.

13. Given an example of a homeomorphism f : K → K of a compact
Hausdorff space consisting of more than one point, such that f has a
unique fixed-point p and fn(x) → p for all x ∈ K.

14. Give an example as above where K ⊂ V is a compact convex subset
of a topological vector space V , and where f comes from a linear
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automorphism of V . (Hint: consider the space of measures on K from
the previous question.)

15. Show that the moduli space of marked complex tori M of dimension
two can be described as the homogeneous spaceM = GL4(R)/GL2(C),
and that the action of Γ = GL4(Z) on M corresponds to a change of
marking. Is Γ\M a reasonable space?

16. Show that the period domain for K3 surfaces can be described as the
homogeneous space

Ω = O(3, 19)/(SO(2)×O(1, 19)).

Describe the discrete group Γ that acts on Ω by change of marking.

17. What does the Atiyah–Bott fixed-point formula say for a rational map
f : P1 → P1? Prove this result, using the residue theorem.

18. Reflections through the roots of the lattice I1,n generate discrete groups
acting on Hn, yielding hyperbolic orbifolds for each n. Identify these
orbifolds for n = 2, 3.

19. Show that D+
4 is isometric to Z4.
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