
MAT213a: Homework 3 – Solutions

1. A C–linear automorphism of C(z) is determined by the image of the identity map
f(z) = z. As the image should be invertible, it can be mapped to any invertible
element, so the Galois group is PSL(2,Z).

2. There should be two solutions for r, one with r < 1 and one with r > 1 (they are
reciprocals). Let us find the solution with r < 1. A spherical square with angles 2π/3
has area 2π/3, which is 1/6-th of the total surface area, so it comes from the cube.
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3. The spherical geodesics happen to be circles, so under the stereographic projection
π, they will be circles (or lines) in the plane. Which ones? Since spherical geodesics
are great circles, they cut the equator γ in two diametrically opposite points, so
they correspond to circles (or lines) in the plane which cut π(γ) in two diametrically
opposite points.

4. This problem is a direct consequence of interpreting the geometry of the Riemann
sphere as follows: If we think of the Riemann sphere as CP1, and z, w ∈ CP1, then
cos d(z, w) = 〈Z,W 〉 where Z,W are unit lifts of z, w to C2.
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5. Suppose v(z) =
∑∞

n=0 anz
n ∂

∂z (coordinates at the origin) is holomorphic vector field
on the Riemann sphere. Switching coordinates to infinity: z → 1/w, ∂

∂z → w2 ∂
∂w .

As v is holomorphic, the power series expansion in w cannot have negative terms, so
we see that v(z) = (a0 + a1z + a2z

2) ∂
∂z and so the space of holomorphic vector fields

is a three dimensional vector space. Now we compute the Lie algebra structure (the
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Set h = 2 ∂
∂z , e = z2 ∂

∂z , f = ∂
∂z . The above implies that

[h, e] = 2e, [h, f ] = −2f, [e, f ] = h.

It is well known that these are the commutation relations for sl2 (for the standard
basis vectors).

6. By the Casorati-Weierstrass theorem, a holomorphic automorphism of Ĉ \ {0, 1,∞}
cannot have essential singularities at 0, 1 or∞, so must extend to a rational function.
As the degree of that rational function is necessarily 1, it must be a fractional linear
transformation. Finally, the points 0, 1,∞ must be permuted, and since a fractional
linear transformation is determined by its values at three points, we see that

Aut(Ĉ \ {0, 1,∞}) = S3.

7. A proper analytic map f : ∆ → C must extend continuously to ∂∆, sending the
entire boundary to infinity. Applying the Schwarz reflection principle to 1/f , we see
that the zeros are not isolated. Similarly, a proper map f : C → C∗ must extend
continuously to a rational function function which omits a point, which is impossible.
However, there are proper maps from C∗ → C such as z + 1/z.

8. Embed the Möbius transformations into CP3. If a sequence of Möbius transfor-
mations does not accumulate to any Möbius transformation, as CP3 is compact, it
must accumulate to some degenerate 2× 2 matrix, which has a 1-dimensional kernel
(spanned by (z1, w1) and 1-dimensional image (spanned by (z2, w2)). In this case,
we have a subsequence of Möbius transformations tending to the constant function
p = z1/w1 away from the point q = z2/w2. An example with p = q = 0 is given by
the sequence of functions fn(z) = 1/(nz).
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9. Let w(z) = cos(z). What does it mean for w : (C, |dz|)→ (C, ρ(w)|dw|) to be a local
isometry away from the critical points? It means precisely that

ρ(w(z))|w′(z)| = 1.

whenever w′(z) 6= 0. The critical points of cos z are πk, on which cos z attains the
values +1 and −1 alternatively. Using cos2 z + sin2 z = 1, we see that

ρ(w) = ρ(cos z) =
1

| sin z| =
1√

1− | cos2 z|
=

1√
1− |w2|

.

To visualize the metric ρ(w)|dw|, one computes the images of horizontal and vertical
lines, which are ellipses and hyperbolas respectively, with foci at ±1.
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10. Since automorphisms of the disk act triple transitively on the boundary, and are
isometries in the hyperbolic metric, the areas of all ideal triangles are the same. We
compute the area of the ideal triangle shown in the first picture:∫ 1

−1

∫ ∞
√

1−x2

1
y2
dydx = π.

−1 1

A

B

C

D

A

B

C

D

E

F

a

b

c

a b

Figure 1: in the schematic diagrams, the Euclidean lines represent hyperbolic lines

From the second picture, we deduce that T (a, 0, 0) + T (b, 0, 0) = T (a + b, 0, 0) + π,
and hence A(a) + A(b) = T (π − a, 0, 0) + T (π − b, 0, 0) = T (2π − a − b, 0, 0) + π =
T (π, 0, 0) + T (π − a − b, 0, 0) = A(a + b). Since A is an additive and continuous
function, it must be linear, so A(a) = a.
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Finally, from the third picture, one observes that

A(ABC) +A(ADE) +A(BEF ) +A(CDF ) = A(DEF ) = π.

Hence, A(ABC) = π −A(a)−A(b)−A(c) = π − a− b− c.

To find the hyperbolic area of an n-gon, one need only subdivide it into triangles.
Adding up the areas of these triangles, one computes that that the area of the polygon
is (n+ 2)π minus the sum of the angles.

11. I will only state the theorem and omit the proof, which is a sequence of simple
computations.

Theorem: (a) The subgroup SU(1, 1) ⊂ SL(2) preserving the form 〈·, ·〉 consists of

matrices of form A =
(
a b

b a

)
which have determinant 1 (up to multiplication by

±I). Any such matrix is an automorphism of the unit disk, and conversely all auto-
morphisms of the unit disk can be presented by such matrices. (b) Furthermore, the
hyperbolic distance satifies cosh d(z, w) = 〈Z,W 〉.
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