
MAT213a: Homework 12 – Solutions

1. Recall that (log σ)′′ = −℘(z). Thus if we define

ζ(z) = (log σ(z))′ =
1
z

+
′∑{ 1

z − λ
+

1
λ

+
z

λ2

}
,

we easily see that ζ ′(z) = −℘(z). Uniqueness follows easily from the oddness.

2. First notice that the derivative of ζ(z + λi) − ζ(z) is identically 0. It follows that
ζ(z + λi)− ζ(z) = ηi for some ηi ∈ C.

Now consider a fundamental parallelogram F with the origin in its interior. We will
now integrate ζ along the ∂F . On one hand, this integral is clearly −λ1η2 + λ2η1

because the opposite sides cancel except for the translation factor. On the other
hand, by the Residue theorem, this integral equals to 2πi ·Resz=0(ζ(z)). The residue
is clearly 1. Putting all of this together, we find that our determinant in question is
2πi.

3. If we take the logarithmic derivative of σ(z + λi) = exp(ai + biz)σ(z), we see that
ζ(z + λi) = bi + ζ(z). Hence bi = ηi. To find ai, we play off the periodicity and the
oddness of σ. More specifically,

σ(λi/2) = exp(ai − biλi/2)σ(−λ/2) = − exp(ai − biλi/2)σ(λ/2)

Hence ai = πi+ biλi/2.

4. From the differential equation ℘′2 = 4℘3 − g2℘ − g3, one can restore the periods by
inverting the elliptic integral.

5. This condition is equivalent to the lattice being generated by two conjugate vec-
tors. Indeed, if this is the case, then g2, g3 are real from the sums that define them.
Conversely, if g2, g3 are real, then by the Theorem 5.14 of the course notes, we see
that is generated by both

∫
γ

dz√
4z3−g2z−g3

and
∫
γ

dz√
4z3−g2z−g3

where γ is a loop which

encloses two roots of the cubic. But these two are clearly conjugate.

6. It is clear that ℘′(z) and −σ(2z)/σ(z)4 both have a pole of order 3 at three at
the origin with the same principal part. It remains to see that both functions are
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doubly-periodic. The only dubious function is −σ(2z)/σ(z)4. We compute

−σ(2z)/σ(z)4 = −σ(2z) exp(biλi/2 + bi(2z + λi)) exp(biλi/2 + bi(2z))
σ(z)4 exp(biλi/2 + biz)4

= −σ(2z) exp(2biλi + 4biz)
σ(z)4 exp(2biλi + 4biz)

= −σ(2z)
σ(z)4

.

7. Recall from class that for the square lattice Λ = Z[i], the Weierstrass ℘ function
maps the square S with vertices (0, 1/2, 1/2 + i/2, i/2) to the lower half-plane. The
boundary of S is mapped to the real axis. Now consider the diagonal joining 0 and
1/2 + i/2. On the diagonal, we have ℘(z) = ℘(z) = ℘(iz) = −℘(z) (using the
symmetry of the lattice and evenness of ℘); so it mapped to the negative imaginary
ray. Thus if we let the triangle T have vertices (0, 1/2, 1/2 + i/2), then ℘(z) maps
either of the 3rd or 4th quadrants; by looking at p(z) ∼ 1/z2, it is clear that T
is mapped to the third quadrant. Hence f(z) = −℘(z/2)2 maps it to the upper
half-plane.
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