MAT213A: HOMEWORK 12 - SOLUTIONS

1. Recall that $(\log \sigma)'' = -\wp(z)$. Thus if we define

$$\zeta(z) = (\log \sigma(z))' = \frac{1}{z} + \sum_{i=1}^{\prime} \left\{ \frac{1}{z-\lambda} + \frac{1}{\lambda} + \frac{z}{\lambda^2} \right\},$$

we easily see that $\zeta'(z) = -\wp(z)$. Uniqueness follows easily from the oddness.

2. First notice that the derivative of $\zeta(z + \lambda_i) - \zeta(z)$ is identically 0. It follows that $\zeta(z + \lambda_i) - \zeta(z) = \eta_i$ for some $\eta_i \in \mathbb{C}$.

Now consider a fundamental parallelogram F with the origin in its interior. We will now integrate ζ along the ∂F . On one hand, this integral is clearly $-\lambda_1\eta_2 + \lambda_2\eta_1$ because the opposite sides cancel except for the translation factor. On the other hand, by the Residue theorem, this integral equals to $2\pi i \cdot \operatorname{Res}_{z=0}(\zeta(z))$. The residue is clearly 1. Putting all of this together, we find that our determinant in question is $2\pi i$.

3. If we take the logarithmic derivative of $\sigma(z + \lambda_i) = \exp(a_i + b_i z)\sigma(z)$, we see that $\zeta(z + \lambda_i) = b_i + \zeta(z)$. Hence $b_i = \eta_i$. To find a_i , we play off the periodicity and the oddness of σ . More specifically,

$$\sigma(\lambda_i/2) = \exp(a_i - b_i\lambda_i/2)\sigma(-\lambda/2) = -\exp(a_i - b_i\lambda_i/2)\sigma(\lambda/2)$$

Hence $a_i = \pi i + b_i \lambda_i / 2$.

- 4. From the differential equation $\wp'^2 = 4\wp^3 g_2\wp g_3$, one can restore the periods by inverting the elliptic integral.
- 5. This condition is equivalent to the lattice being generated by two conjugate vectors. Indeed, if this is the case, then g_2, g_3 are real from the sums that define them. Conversely, if g_2, g_3 are real, then by the Theorem 5.14 of the course notes, we see that is generated by both $\int_{\gamma} \frac{dz}{\sqrt{4z^3 g_2 z g_3}}$ and $\int_{\overline{\gamma}} \frac{dz}{\sqrt{4z^3 g_2 z g_3}}$ where γ is a loop which encloses two roots of the cubic. But these two are clearly conjugate.
- 6. It is clear that $\wp'(z)$ and $-\sigma(2z)/\sigma(z)^4$ both have a pole of order 3 at three at the origin with the same principal part. It remains to see that both functions are

doubly-periodic. The only dubious function is $-\sigma(2z)/\sigma(z)^4$. We compute

$$-\sigma(2z)/\sigma(z)^4 = -\frac{\sigma(2z)\exp(b_i\lambda_i/2 + b_i(2z + \lambda_i))\exp(b_i\lambda_i/2 + b_i(2z))}{\sigma(z)^4\exp(b_i\lambda_i/2 + b_iz)^4}$$
$$= -\frac{\sigma(2z)\exp(2b_i\lambda_i + 4b_iz)}{\sigma(z)^4\exp(2b_i\lambda_i + 4b_iz)}$$
$$= -\frac{\sigma(2z)}{\sigma(z)^4}.$$

7. Recall from class that for the square lattice $\Lambda = \mathbb{Z}[i]$, the Weierstrass \wp function maps the square S with vertices (0, 1/2, 1/2 + i/2, i/2) to the lower half-plane. The boundary of S is mapped to the real axis. Now consider the diagonal joining 0 and 1/2 + i/2. On the diagonal, we have $\overline{\wp(z)} = \wp(\overline{z}) = \wp(iz) = -\wp(z)$ (using the symmetry of the lattice and evenness of \wp); so it mapped to the negative imaginary ray. Thus if we let the triangle T have vertices (0, 1/2, 1/2 + i/2), then $\wp(z)$ maps either of the 3rd or 4th quadrants; by looking at $p(z) \sim 1/z^2$, it is clear that T is mapped to the third quadrant. Hence $f(z) = -\wp(z/2)^2$ maps it to the upper half-plane.