Complex Analysis: Homework 5

- 1. Prove that for any nonzero polynomial p(z) and any $\lambda \neq 0$, the function $f(z) = p(z) e^{\lambda z}$ has infinitely many zeros.
- 2. Let $M(r) = \sup_{|z|=r} |f(z)|$ where $f: \mathbb{C} \to \mathbb{C}$ is an analytic function, not identically equal to zero. Suppose $M(r^2)^2 = M(r)M(r^3)$ for some r > 0, $r \neq 1$. Prove that $f(z) = az^n$ for some $a \neq 0$ and integer $n \geq 0$.
- 3. Prove there is no nonzero analytic function $f: \Delta \to \Delta$ with zeros at the points $a_n = 1 1/(n+1)$, $n = 1, 2, 3, 4, \ldots$ (Thus in contrast to $f: \mathbb{C} \to \mathbb{C}$, the zeros of a map $f: \Delta \to \Delta$ cannot be an arbitrary discrete set. Hint: consider $f(0)/B_n(0)$, where $B_n: \Delta \to \Delta$ is a proper map of degree n with zeros at a_1, \ldots, a_n .)
- 4. Formulate and prove an infinite product formula for $\cos(\sqrt{z})$.
- 5. Give an example of a canonical product $f(z) = \prod_{1}^{\infty} (1 z/a_n)$ that has order exactly 1.
- 6. Let f(z) be an entire function of finite order with simple zeros at the points z = n + im, $(n, m) \in \mathbb{Z}^2$. Show there are polynomials P and Q such that $f(z+1) = e^{P(z)}f(z)$ and $f(z+i) = e^{Q(z)}f(z)$. Prove that at least one of P and Q is nonzero.
- 7. Prove that $\prod_{1}^{\infty} \cos(\pi/2^{n}) = (2/\pi)$.
- 8. Show that $1/\Gamma(z)$ has order one, but there is no constant C > 0 such that $1/\Gamma(z) = O(\exp(C|z|))$.
- 9. Evaluate $\Gamma(1/3)$. Then find a formula for $\Gamma(3z)$ in terms of Γ at z, z+1/3 and z+2/3.
- 10. Prove that $\int_0^1 \log \Gamma(t) dt = \log \sqrt{2\pi}$, using the duplication formula for $\Gamma(2z)$.