
Ranks of twists of elliptic curves

(These are some notes to my Number Theory Seminar lecture Feb. 3, 2010)

B. Mazur

In this lecture I’ll talk a bit more about Mordell-Weil sta-
bility, and discuss–in a slightly more precise way—my joint
work with Karl Rubin, and specifically some of the contents
of the article with Karl: “Ranks of twists of elliptic curves
and Hilbert’s Tenth Problem.”

1. Mordell-Weil Stability

Let L/K be a finite extension of number fields. Does there exist an
elliptic curve E over K with the property that

rank(E(K)) = rank(E(L)) > 0?

If so, then H10P has a negative solution for the rings of integers in
any number field.

One does not need the full strength of the above statement. In fact,

Theorem 1.1. (Poonen, Shlapentokh, Eisenträger) if for every cyclic
Galois number field extension of prime degree L/K there is an elliptic
curve E over K with the property that

rank(E(K)) = rank(E(L)) > 0,

then

• H10P has a negative solution for any commutative ring of infi-
nite cardinality that is finitely generated over Z, and
• for K any number field ifOK is its ring of integers, every listable

subset of OK is Diophantine over OK .

Karl Rubin and I show that if the 2-adic Shafarevich-Tate Conjecture
holds, then the hypotheses of Theorem 1.1 hold, and therefore, condi-
tional on the 2-adic Shafarevich-Tate Conjecture, we see that, among
other things, H10P has a negative solution for the ring of integers in
any number field.

We do this by an analysis of 2-Selmer groups of elliptic curves.
1
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2. Setting up

If E is an elliptic curve over a number field K we will be considering
Kummer 2-descent for E over K, which has to do with the cohomology
sequence corresponding to the exact sequence of GK-modules

0→ E[2]→ E
mult by 2−→ E → 0.

One gets a natural injection of F2-vector spaces

E(K)/2E(K) ↪→ H1(GK , E[2]).

Let us identify E(K)/2E(K) with its image subspace of H1(GK , E[2]).
We will assume the 2-adic Shafarevich-Tate Conjecture (STC) for all
elliptic curves over all number fields.

2.1. Exponent 2 Selmer groups. The vector space H1(GK , E[2])
is infinite dimensional, but there is a natural finite dimensional space in
it that contains E(K)/2E(K)—and therefore that provides an upper
bound for the rank of the Mordell-Weil group of E over K. Namely,
for each place v of K, setting

H1
f (Kv, E[2]) := the image of E(Kv)/2E(Kv) ↪→ H1(Kv, E[2])

we see that under the specialization mapping

H1(K,E[2])→ H1(Kv, E[2])

the subspace E(K)/2E(K) maps to H1
f (Kv, E[2]) ⊂ H1(Kv, E[2]).

If we want to emphasize the place v we might write H1
f (Kv, E[2])

as H1
fv

(Kv, E[2]). Note though, the slight abuse of notation in that

H1
f (Kv, E[2]), as defined, depends upon E and not only on E[2].
Nevertheless, and this is an important point of us, for places v 6 |2∞

and such that E has good reduction at v1 the subspace

H1
f (Kv, E[2]) ⊂ H1(Kv, E[2])

does not depend upon E, and only on E[2] since (for these places v)
this subspace is just the image

H1(Kunr
v , E[2]) −→ H1(Kv, E[2]).

Define, then, (the exponent 2-Selmer group of E over K)

S(K,E) ⊂ H1(K,E[2])

1In particular, for all but finitely many v
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to be the subspace consisting of cohomology classes h ∈ H1(K,E[2])
such that for all places v of K the specialization of h to H1(Kv, E[2])
lands in H1

f (Kv, E[2]). By this discussion we have

E(K)/2E(K) ⊂ S(K,E) ⊂ H1(K,E[2])

It is known that S(K,E) is finite dimensional, and—equally significant—
it is computable. Put

s(K,E) := dimF2 S(K,E)

so that we have the upper bound:

s(K,E) ≥ rank E(K).

One consequence of STC is that

s(K,E) ≡ rank E(K) mod 2

so that if s(K,E) = 1 then, conditional on STC, rank E(K) = 1 as
well.

2.2. Quadratic twists. If F/K is a quadratic extension, let EF de-
note the elliptic curve over K obtained by twisting E with the qua-
dratic character over K corresponding to F/K. Note that we have the
all-important isomorphism,

E[2] = EF [2],

which we use to identify these F2[GK ]-modules, and therefore we also
have the identification

H1(K,E[2]) = H1(K,EF [2]).

To be sure, the “local conditions” used to define the finite subspaces
S(K,E) and S(K,EF ) in H1(K,E[2]) may differ (but they can differ
for only for finitely many places v). It follows, of course, that the
exponent 2-Selmer groups S(K,E) and S(K,EF ) may differ as well.
We work with this! (One can imagine a graph with vertices equal to
the twists EF and where any of the edges on this graph connect two
twists where you can control the change in 2-Selmer rank: you move
around in this graph.)

Definition 2.1. For E an elliptic curve over K and s ≥ dimF2 E(K)[2]
let Ns(E,K;X) denote the number of quadratic extensions F/K with
disc(F/K) ≤ X such that s(K,EF ) = s.

Definition 2.2. We’ll say that E an elliptic curve overK has constant
2-Selmer parity if

s(K;E) ≡ s(K,EF ) mod 2
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for all quadratic extensions F/K.

Given a recent theorem of the Dokchitser brothers it is natural to
conjecture that E over K has constant 2-Selmer parity if and only if
K is totally imaginary and E acquires good reduction over an abelian
extension of K. This is because T. and V. Dokchitser prove exactly this
statement for analytic parity (as opposed to 2-Selmer parity)2. Also,
in the light of various results for certain specific elliptic curves over
Q (see section 4 below) it seems natural to conjecture that whenever
there is one twist of E that has 2-Selmer rank s, the quantity of them3

positive density of them that have 2-Selmer rank s. Specifically:

Conjecture 2.3. (Positive Density)

• If E has nonconstant parity overK then for any s ≥ dimF2 E(K)[2]
there is a positive density of twists of E with 2-Selmer rank s;
i.e., there is a positive constant Cs = Cs(K,E) > 0 such that

Ns(E,K;X) = Cs ·X + o(X).

• If E has constant parity overK then one has the same statement
for the integers s ≥ dimF2 E(K)[2] such that

s ≡ s(K,E) mod 2.

Our techniques seem not to be able to get results of this precision.
But if you allow the phrase

“E over K has many quadratic twists EF with s(K,EF ) = s”

to mean that Ns(E,K;X) > X/logαX for some α and X >> 0 then
we show, for example, that if L/K is an arbitrary Galois number field
extension that is cyclic of prime degree, and if E is an elliptic curve over
K satisfying our running hypotheses (see section 5 below) we have that
for any s ≥ 0 the elliptic curve E over K has many quadratic twists4

EF with s(K,EF ) = s(L,EF ) = s.

3. Further notes about “many twists” and “positive
density”

Here is an example of two results that we prove unconditionally:

2T. Dokchitser, V. Dokchitser, Elliptic curves with all quadratic twists of positive
rank Acta Arithmetica 137 (2009) 193-197

3ordering these twists, say, by the size of disc(F/K)

4This number a = 2/3 or a = 1/3 according as the action of the Galois group on
E[2] is GL2(F2) or cyclic of order three.
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Theorem 3.1. Given any number field K there is an elliptic curve E
over K such that there are many quadratic twists of E such that the
twisted elliptic curve EF has no nontrivial rational points over K.

We can even take E to be the base change to K of an elliptic curve
over Q.

Theorem 3.2. If K is not totally imaginary, and E is any elliptic
curve over K with no nontrivial K-rational 2-torsion, there are many
quadratic twists EF such that have no nontrivial rational points over
K.

“Many quadratic twists” can be taken to mean here>> X/ log2/3(X)
if the action of the Galois group on E[2] is the full GL2(F2)-action and

>> X/ log1/3(X) if the action is cyclic of order three.

4. Positive density over the field K = Q

There is an extensive literature about this topic. In this footnote5

are some of the relevant references, and here are comments about a few
of these articles6.

Briefly,

• In [HB], Heath-Brown works with the elliptic curve

E : y2 = x3 − x
5 Some literature

[C] S. Chang, Quadratic Twists of Elliptic Curves with Small Selmer Rank,
(arXiv:0809.5019)
[H-B] D.R. Heath-Brown, The size of Selmer groups for the congruent number
problem II, Invent. Math. 118 (1994), 331370.
[J-O] K. James and K. Ono, Selmer groups of quadratic twists of elliptic curves,
Math. Ann. 314 (1999), 117.
[O] K. Ono, Non-vanishing of quadratic twists of modular L-functions and appli-
cations to elliptic curves, J. reine angew. Math. 533 (2001), 8197.
O-S] K. Ono and C. Skinner, Non-vanishing of quadratic twists of modular L-
functions, Invent. Math. 134 (1998), 651660.
[S-D] Sir Peter Swinnerton-Dyer, The effect of twisting on the 2-Selmer group,
Math. Proc. Camb. Phil. Soc. 145 (2008), 513526.
[X-Z] M. Xing and A. Zaharescu, Distribution of Selmer groups of quadratic twists
of a family of elliptic curves, Adv. Math. 219 (2008), 523553.
[Y] G. Yu, On the quadratic twists of a family of elliptic curves, Mathematika 52
(2005), 139154.

6For more, see the neatly listed and annotated survey of work regarding twists
of elliptic curves over Q in the introduction of the article bf [S]
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and computes Cs(Q, E).
• In [S-D], Swinnerton-Dyer also proves a theorem (of positive-

density type. Computing the density by ordering twists in terms
of the number of prime divisors of the discriminant, Swinnerton-
Dyer shows that–in that sense of density—the density of twists
(for the elliptic curves over Q that he is considering) with 2-
Selmer rank s is

2s
∏∞

n=0 (1− 2−2n−1)∏k
j=1(2

j − 1)
.

It is interesting to note that— starting with these numbers as
density—if one naively computes the “average number of ele-
ments in the group S(Q, EF )” (ordering twists of E in terms
of the number of prime divisors of the discriminant) one gets
the number 3, which is the same number that Manjul Bhargava
has recently shown to be the average number of elements in the
group S(Q, E) where E ranges now over all elliptic curves over
Q ordered by Faltings height.
• In [O-S] Ken Ono and Chris Skinner proved (using Kolyvagin

et al) a similar result to Theorem 3.2 (for K = Q) by showing
the analogous statement for central values of L functions, but
their theorem is stronger since they show the number of twists
to be of positive density, and—in fact—of density 1/2.
• In [J-S] Kevin James and Ken Ono have results for numbers

of twists with small `-Selmer rank over Q.

5. Main Theorems

5.1. Running Hypotheses: Let K be a number field and E an
elliptic curve over K with ∆E a discriminant of a model of E over K.
Our running hypotheses on E over K will be:

• The action of GK on E[2] is full in the sense that its splitting
field is an S3-extension of K.
• For some place vo of K one of these two conditions hold:

(1) – vo 6 |2∞,
– E has multiplicative reduction at vo,
– ordvo(∆E) is odd.

or:

(2) – vo is real,
– (∆E)vo < 0.
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5.2. The new part of 2-Selmer. Let F/K be a quadratic extension
and EF the twist of E by the quadratic character determining F/K.
Let s(K,E) be the F2-dimension of the 2-Selmer group of E over K,
viewed as F2-vector space.

If L/K is a cyclic extension of odd prime degree, define snew(L,E)
to be the F2-dimension of the “new part” of the Selmer F2[Gal(L/K)]
module S(L,E) so that

s(L,E) = s(K,E) + snew(L,E).

5.3. (Arbitrary Selmer 2-rank over K and L/K-stability of the
new part). Under the above running hypotheses, the following theo-
rems hold.

Theorem 5.1. For L/K a given cyclic extension of odd prime degree7

and for any s ≥ 0, the elliptic curve E has “many” twists8 EF such
that s(K,EF ) = s and

snew(L,EF ) = snew(L,E).

We do this by single steps, showing that we can increase 2-Selmer
rank by one, keeping the new part stable, and—if the 2-Selmer rank is
positive, we can decrease it by one, also keeping the new part stable.
If Gal(L/K) is of odd prime order. let

F2[Gal(L/K)] = F2

⊕
{⊕iki}

where ki are fields (i = 1, 2, . . . , ν) spanning the augmentation ideal of
the group ring F2[Gal(L/K)]—allowing us to break up Snew(L,E) into
a direct sum of ki-vectors spaces:

Snew(L,E) = ⊕iS{i}(L,E).

5.4. (Reduction of the new part). Writing

s{i}(L,E) := dimki
S{i}(L,E),

we have the theorem:

Theorem 5.2. Keeping to the running hypotheses, suppose that
L/K is a cyclic extension of odd prime degree, and that s{i}(L,E) ≥ 1
for all i = 1, 2, . . . , ν. There is a quadratic twist EF such that

s{i}(L,EF ) = s{i}(L,E)− 1

for i = 1, 2, . . . , ν.

7We also show the analogous thing for the case of L/K quadratic, where the
argument is slightly different.

8for the definition of this see the previous section
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5.5. Applications. These theorems, put together give us the following
corollary:

Corollary 5.3. Suppose L/K is a cyclic extension of odd prime de-
gree9. Let s ≥ 0. There is an elliptic curve A over K that is a quadratic
twist of E and that has the following features:

• s(K,A) = s,
• rank(A(L)) = rank(A(K)).

This corollary follows by applying Theorem 5.2 repeatedly until we
get a twist A′ of E with s{io}(L,A′) = 0 for some io. Then use Theo-
rem 5.2 to get a twist A of A′ (and hence of E) which retains the fact
that s{io}(L,A) = 0 for some i, and also has s(K,A) = s. We must
then show that rank(A(L)) = rank(A(K)). Noting that A(L) is a
Z[Gal(L/K)]-module (and that Gal(L/K) has odd prime degree) you
prove that a strict inequality of ranks, rank(A(L)) > rank(A(K)),
would imply that s{i}(L,A) > 0 for all i. Therefore rank(A(L)) =
rank(A(K)) and Corollary 5.4 is proved.

Corollary 5.4. Let K be any number field and E any elliptic curve
over K that satisfies our running hypotheses. Let L/K be cyclic of
prime order. Then there exists a quadratic twist A of E over K such
that rank(A(L)) = rank(A(K)) = 1.

6. Methods

6.1. A simple Selmer Rank-Changing Lemma.

By the troublesome places for E an elliptic curve over K (satis-
fying our running hypotheses) we mean

• all primes of K where E has additive reduction,
• all primes of multiplicative reduction with ordv(∆E) even,
• all primes above 2,
• all real places with (∆E)v > 0.

Let F/K be a quadratic extension such that:

• All troublesome places of K for E split in F/K,
• there is a unique finite prime vo of K such that F/K is ramified

at vo, and E(Kvo)[2] 6= 0;
• the prime vo has the added property that H1

fv
(Kv, E[2]) is of

dimension one.

9See footnote 1
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Lemma 6.1. (simple rank changing lemma) Under the above hy-
potheses for F/K and the running hypotheses for E over K consider
the localization mapping

λ := locvo : S(K,E) −→ H1
fv

(Kv, E[2]).

We have that s(K,EF ) = s(K,E) + 1 if λ is zero,
and s(K,EF ) = s(K,E)− 1 if λ is nonzero.

The “edges” of one of the graphs alluded to in the earlier sections
connect twists of E that allow us to pass from one vertex to the other
using the hypotheses of this simple rank changing lemma10. We will,
later, give a sense of what goes into the proof of this type of “rank-
changing lemma” but, for now, I only want to point out that it won’t
yet give us the type of Mordell-Weil stability theorem that we are after,
since the designated vo in K may very well split in the cyclic extension
L/K. We need a similar lemma involving more than one vo, and more
general hypotheses.

6.2. A more general Selmer Rank-Changing Lemma.

Let T be a finite set of places of K and consider the direct sum of
the local finite cohomology groups, H1

fv
(Kv, E[2]), for v ∈ T ; i.e.:

HT :=
∑
v∈T

H1
fv

(Kv, E[2]).

We have a natural mapping

locT : S(K,E)→ HT

and let εT (E,K) denote the dimension of the cokernel of this mapping.
Now let F/K be a quadratic extension such that all troublesome places
of K for E split in F/K and εT (E,K) ≤ 1.

Global (Poitou-Tate) duality together with some very interesting
congruence (mod 2) due to Kramer, together with an application of
Cebotarev, gives us, among other things, that

s(K,EF ) = s(K,E)− dimHT + 2εT (E,K).

(The argument for this also makes use of the useful trivia fact: if
you know the parity of a non-negative number ≤ 1, then you know

10we may also add edges where we can control the change in 2-Selmer rank by
other means . . .
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the number.) It is this type of rank-changing lemma that will allow
us, under suitable conditions, to control the change of rank of both
s(K,E) and s(L,E) after twist to EF .

6.3. Kramer’s Congruences. Let F/K be a quadratic extension of
number fields and put

NF
v := the image of E(Fw)

Norm−→ E(Kv)

for w a place of F over v. Put

δFv := dim
E(Kv)

NF
v

(these being a.e. zero).

Lemma 6.2. Identifying

H1
fv

(Kv, E[2]) = E(Kv)/2E(Kv)

we have

H1
fv

(Kv, E[2]) ∩H1
fv

(Kv, E
F [2]) = NF

v /2E(Kv).

Theorem 6.3. (Kramer)

s(K,EF ) ≡ s(K,E) +
∑
v

δFv mod 2.

Give idea of the unusual proof!
Kramer defines an alternating pairing on

S(K,EF ) ∩ S(K,E) ⊂ H1(K,E[2])

with kernel equal to NF/KS(K,F ). So we have that the parity of the
dimensions of S(K,EF )∩S(K,E) and NF/KS(K,F ) are the same; this
gives him the basic congruence modulo two necessary for showing the
formula above.

6.4. Criteria for change or no change in local conditions defin-
ing the Selmer group of a twist of E. From the lemma and other
arguments you get fairly sharp criteria for when a twist induces no
change in local conditions at a given place v and when it induces
transversal change. To give a sense of the type of criteria, here is
an example (where there is no change):

Lemma 6.4. If at least one of the following conditions holds, then

H1
fv

(Kv, E[2]) = H1
f (Kv, E

F [2])

and δFv = 0

(1) v splits in F/K, or
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(2) v 6 |2 and E(Kv)[2] = 0, or
(3) E has multiplicative reduction at v, F/K is unramified at v,

and ordv(∆E) is odd, or
(4) v is real and (∆E)v < 0, or
(5) v is a “good” prime, in the sense that E has good reduction at

v and F/K is unramified at v.

In contrast to the above lemma, we get a change of local condition
and in fact, transversality in the sense that

H1
f (Kv, E[2]) ∩H1

f (Kv, E
F [2]) = 0

and
E(Kv)/NormF/KE(Fw) ∼= H1

f (Kv, E[2]),

if v 6 |2∞, v is ramified in F/K and E has good reduction at v.

6.5. Global Duality. Let T be a finite set of places of K and consider
the direct sum of the local finite cohomology groups, H1

fv
(Kv, E[2]), for

v ∈ T ; i.e.:

HT :=
∑
v∈T

H1
fv

(Kv, E[2]).

We have a natural mapping

locT : S(K,E)→ HT

and let εT (E,K) denote the dimension of the cokernel of this mapping.

Global duality gives us, among other things, that if a certain collec-
tion of places11 of K split in F/K and if

(1) T is the set of finite primes v of K such that F/K is ramified
and and E(Kv)[2] 6= 0, and

(2) εT (E,K) ≤ 1,

then:

s(K,EF ) = s(K,E)− dimHT + 2εT (E,K).

11These are:
• all primes of E of additive reduction,
• all primes of multiplicative reduction with ordv(∆E) even,
• all primes above 2,
• all real places with (∆E)v > 0.
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(The argument for this also makes use of the useful trivia fact: if
you know the parity of a non-negative number ≤ 1, then you know the
number.)

6.6. The Cebotarev density Theorem. In order to apply the above
formula, one has to find a pair (F/K, T ) where F/K is a quadratic
extension and T is a subset of ramified places of F/K satisfying the
maze of conditions above. In most of our applications—e.g. proceeding
by by single steps in Theorem 5.1—the set T will in fact consist in a
single place corresponding to a prime ideal P , and F = K(

√
π) where

π is a generator of an appropriate odd power of P pinned down by a
number of further congruences. To guarantee the existence (and also
to compute densities of appropriate such prime ideals P ) we use, of
course, Cebotarev’s density Theorem.

It is at this point, by the way, that we make use of our running
hypotheses; we need these hypotheses in order to guarantee that our
Cebotarev conditions are satisfiable. We need that K(E[2]) is not
contained in a certain elementary abelian 2-extension of K, so we have
to assume E(K) has no 2-torsion. Our running hypotheses 3.1 are
also used here; without those hypotheses there are curves for which all
twists have the same 2-Selmer rank parity.

7. A bit more detail: For fixed Galois extension L/K of
prime degree, how to choose appropriate E so that we
can get twists of E over K with different 2-Selmer

ranks, and rank E(K) = rank E(L)

Given an L/K cyclic of odd prime order p and E overK, and putG =
Gal(L/K). We will be dealing with the group rings R[G] for R various
commutative rings. Let I = IR ⊂ R[G] denote the augmentation ideal,
noting that R = R[G]/IR. We view S2(E;L) as an F2[G]-module,
which seems awkward at first, since A := F2[G] is an étale F2-algebra,
but not—of course—a field. We write it as as a direct product of fields,
signaling out the “‘first factor” as the quotient by the augmentation
ideal, as follows:

A = F2[G] = F2 × IA = F2 × k1 × k2 × · · · × kν .
Note: If for some index 1 ≤ i ≤ ν the ki-vector space S2(E;L)⊗A ki
vanishes, then E has stable Mordell-Weil rank for the cyclic extension
L/K. This is because there are only two Q-rational irreducible fac-
tors of the group ring, Q[G] = Q ⊕Q[µp] and so we see that if E(L)
is of rank strictly greater than the rank of E(K) we must have that
E(L)⊗Q contains a (direct summand) sub-Q[G]-module isomorphic to
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the augmentation ideal IQ[G] and so E(L)⊗Q2 contains a (direct sum-
mand) sub-Q2[G]-module isomorphic to the augmentation ideal IQ2 [G]
and therefore E(L) ⊗ Z2 contains a sub-Z2[G]-module isomorphic to
the augmentation ideal IZ2 [G]. It follows (by an easy argument) that
we must have that E(L)⊗ F2 contains a submodule isomorphic to IA
and therefore that S2(E;L)⊗A ki doesn’t vanish for any i.

7.1. Key Proposition.

Proposition 7.1. Let K be a number field and E an elliptic curve
over K with full Galois action on 2-torsion. Let ∆ be the discriminant
of some model of E and suppose that K has a place vo satisfying one
of the following conditions:

• vo is real and ∆vo < 0,
• vo is nonarchimedean and doesn’t divide 2, E has multiplicative

reduction at vo, and ordvo(∆) is odd.

Then:

(1) For every r ≥ 0 E has“many” quadratic twists E ′ over K with
2-Selmer rank r.

(2) Let L/K be a cyclic extension of odd prime degree, with nota-
tion as above, and suppose that

S2(E;L)⊗A ki 6= 0

for all i (0 ≤ i ≤ ν).
Then there exists a quadratic twist E ′ of E such that

dimki
S2(E

′;L)⊗A ki = dimki
S2(E

′;L)⊗A ki − 1

for all i (0 ≤ i ≤ ν).

Proposition 7.1(1) is moving in the direction of at least a weak qual-
itative version of Conjecture 2.3. A further result which gives us some
“mobility” for a general number field K and any elliptic curve E over
K with no K-rational 2-torsion, is the following:

Proposition 7.2. If the rank of the 2-Selmer group of E is s we can
achieve ranks s′ by appropriate twists of E for any s′ ≡ s mod 2 such
that

0 ≤ s′ ≤ s.

That is, we can go down, preserving parity, in general (given that there
is no 2-torsion rational over K). But—so far we can not “go up” in
complete generality.


