Reading Bombelli ( April 27, 2001)
Federica La Nave and Barry Mazur

Rafael Bombelli’s L’Algebra, originally written in the middle of the sixteenth century,
is one of the founding texts of the title subject, so if you are an algebraist, it isn’t unnatural
to want to read it. We are currently trying to do so.

Now, much of the secondary literature on this treatise concurs with the simple view
found in Bourbaki’s Eléments d’Histoire des Mathématiques :

“Bombelli . .. takes care to give explictly the rules for calculation of complex numbers
in a manner very close to modern expositions.”

This may be true, but is of limited help in understanding the issues that the text is
grappling with: if you open Bombelli’s treatise you discover nothing resembling complex
numbers until page 133! at which point certain mathematical objects (that might be
regarded by a modern as “complex numbers”) burst onto the scene, in full battle array, in
the middle of an on-going discussion. Here is how Bombelli introduces these mathematical
objects. He writes: “I have found another sort of cubic radical which behaves in a very
different way than the others.”

“Ho trovato un’altra sorte di R.c.legate molto differenti dall’altre . . ..

The cubic radicals that Bombelli is contemplating here are the radicals that occur in
the general solution of a cubic polynomial. Bombelli has come to the point in his treatise
where he is working with Dal Ferro’s formula for the general solution to cubic polynomial
equations and considers (to resort to modern language) cubic polynomials with “three real
roots” 2. He produces the formula (a sum of cube roots of conjugate quadratic imaginary
expressions) which yields (“formally”, as we would say) a solution to the cubic polynomial
under examination.

Complex numbers— which, when they occur in Cardano’s earlier treatise Ars Magna,
occur neatly as quantities like 2 + 4/—15. But they appear initially in Bombelli’s treatise
as cubic radicals of the type of quantities discussed by Cardano; a somewhat complicated
way for them to arise in a treatise that is thought of as an organized exposition of the
formal properties of complex numbers! Why doesn’t Bombelli cite Cardano here? Why
does he not mention his predecessor’s discussion of imaginary numbers? Bombelli is not

1 Our page numbers refer to Bortolotti and Forti’s 1929 edition of “I’Algebra”. For an

account of the history of the publication of this treatise, see below. We have also listed
some of the secondary literature in the bibliography below.

2 this is what Bombelli’s contemporaries called the “irreducible case” (a term still used
by Italian mathematicians today).



shy elsewhere of praising the work of Cardano. Why, at this point, does Bombelli rather
seem to be announcing a discovery of his own (“I have found...”)?

Here is a glib suggestion of an answer: Bombelli has no way of knowing, given what
is available to him, that his cubic radicals are even of the same species as the complex
numbers of Cardano. How, after all, would Bombelli know that the cube root of a complex
number is again a complex number? Of course one can go in the opposite direction with
ease: that is, one can take a complex number z and cube it to get a number y = 23
with known cube root, and one might be lucky in guessing z, given y. Bombelli, for
example tells us that the cube root of 2+ 11y/—1 is 2++/—1 and thereby gets the solution
z=2++/-1+2—+/—1 =4 to the cubic equation 23 = 15z + 4. But the general problem
of extracting cube roots is of a different order, for how you would go about solving the
equation

(X +iY)® = A+iB,

or equivalently, the simultaneous (cubic, of course) equations

X% —3XY? = A4

: 3X?Y -Y3=B8,

without having various eighteenth century insights at your disposal? There is surely the
smell of circularity here, despite the fact that a “modern” can derive some simple pleasure
in analyzing the 0-cycle of degree 9 in complex projective 2-space given by the intersection
of those two cubics. To Bombelli, his cubic radicals were indeed new kinds of radicals.

Can we be content with this answer?

A few paragraphs later Bombelli makes it clear that he was quite dubious, at first,
about the legitimacy of his discovery and only slowly accustomed himself to it; he writes:

“[This radical] will seem to most people more sophistic than real. That was the opinion
even I held, until I found demonstration [of its existence ]| ... 73

What, then, does Bombelli mean by demonstration? What does he mean by ezxistence?
As we shall see, Bombelli only ascribes eristence, whatever this means, to the yoked sum
of two cubic radicals (the radicands being, in effect, conjugate complex numbers). As he
puts it,

“It has never happened to me to find one of these kinds of cubic root without its
conjugate.”*

Let us add a further element to this stew of questions: In the “irreducible case”,
i.e., the case where the cubic polynomial has three real roots, does Bombelli believe that
the solution given by his “new kind of cubic radicals” correspond to any, or all, of the

3 Bombelli (1966), p. 133.
4 Bombelli (1966), p. 134.



three solutions? (He seems to.) In what sense does Bombelli’s general solution lead to a
numerical determination of one, or more, of the three roots of the polynomial? If you do
not have de Moivre’s insight, or anything equivalent to that insight, you may be stymied
by the problem of “using” the general solution by cubic radicals to help you find, or even
approximate, any of the three real numbers which are roots of the cubic polynomial that
the “general solution” purports to solve.’

An evolving theme in Bombelli’s thought is the idea of connecting the ancient problem
of angle trisection to the problem of finding roots of cubic polynomials. Of course, the
modern viewpoint makes this connection quite clear. Bombelli also develops a method (as
he says, “in the plane”) for finding a real number solution to a cubic polynomial equation.
His method involves making a construction in plane geometry dependent upon a parameter
(the parameter being the angle that two specific lines in the construction subtend) and
then “rotating” one of those lines (this “rotation” affects other changes in his construction)
until the lengths of two line segments in the construction are equal ; these (equal) lengths
then provide the answer he seeks (we will refer to this type of construction as a neusis
construction: see section 5 below). To what extent do these discussions ( trisection of
angle — and neusis construction) play a role in providing a “demonstration” to Bombelli
of the existence of his yoked cubic radicals? (We will discuss this in detail, in sections 4-6
below).

Tempering any answer that we might offer to any of these questions is the fact that the
incubation period for Bombelli’s text, and its writing, spanned more than two decades.
Bombelli’s treatise records the evolution of his thought, and the answers that Bombelli
entertains for some of these questions change with time. Reading him may perhaps give
us a portrait of an early father of algebra grappling with what it means for a concept to
exist. We feel that this portrait deserves to be more fully drawn than has been done.

We are not yet ready to do this, and are only in mid-journey in our reading of Bombelli.
Nevertheless we have put together the present article in hopes that what we have learned
so far may be useful to other readers. We wish to thank David Cox and Chandler Davis
for their helpful comments and questions regarding our earlier drafts.

1. Bombelli’s writing. Bombelli wrote in Italian (which, according to Dante, is the
language of the people). To our knowledge, his is the first long treatise on mathematics

5 As De Moivre put it in his article published in 1738: “There have been several authors,
and among them Dr. Wallis, who have thought that those cubic equations, which are
referred to the circle, may be solved by the extraction of the cube root of an imaginary
quantity, as of 81 + 1/—2700, without any regard to the table of sines: but that is a mere
fiction; and a begging of the question; for on attempting it, the result always recurs back
again to the same equation as that first proposed. And the thing cannot be done directly,
without the help of the table of sines, specially when the roots are irrational; as has
been observed by many others.” (Abraham De Moivre, “Of the Reduction of Radicals to
more Simple Terms,” The Philosophical Transactions of the the Royal Society of London,
abridged by C. Hutton, G. Shaw, and R. Pearson, volume VIII (London: 1809) 276.
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written in Italian. He was faced, therefore, with something of a Dante-esque project: to
choose words for existing terms (generally from Latin) and to invent Italian words for the
various concepts that came along. That his book is in Italian has a mild disadvantage,
and a great advantage for a reader. On the one hand many of Bombelli’s neologisms
never caught on, and they may seem quite strange to a modern. These terms therefore
must be carefully deciphered (we give a partial glossary in Appendix B below). On the
other hand his style is quite personal (putting aside the lengthy computations about cubic
irrationalities that are spelled out in prose!). At times the text reads as if it were a private
journal. To get a sense of this see Appendix A below for a translation of his introductory
remarks. What we know of Bombelli’s life (see section 2 below) comes, it seems, entirely
from this treatise. More importantly, as we have already mentioned, Bombelli’s informality
allowed him to keep in the text some of his earlier attitudes along with the changes that
they went through over the twenty year period during which he worked on I’Algebra.

2. Bombelli and his Algebra

We do not know precisely where Bombelli was born. In his work, L’Algebra, he
calls himself “citizen of Bologna.” Bombelli was a member of a noble family from the
countryside around Bologna. They came to Bologna at the beginning of the XIII century.
At the end of the same century they, being “ghibellini,” were forced to leave the city and
only returned in the XVI century.

Bombelli was a civil engineer, and in L’Algebra he mentions his involvement in the
project of draining the Chiana swamp in Tuscany. He recounts that during periods of
interruption of this project he wrote his book. The treatise L’Algebra as edited and pub-
lished by Bortolotti in 1929, consists of two “parts”® which were, it seems, initially written
in 15507. After having first written his manuscript, Bombelli came to know Diophantus’
Arithmetic which was in a codex of the Vatican Library®. Bombelli, then, made a general
revision of his manuscript and, among other things, included Diophantus’ problems in his
text. He published none of it until 1572. At that time Bombelli published only the first
part. He apologized, saying that he could not also publish the other part because it had
not yet been “brought to the level of perfection required by mathematics”. However, it
was surely circulating among scholars since in Bologna’s libraries we still find two copies
of the manuscript. The second part of the book was not published and was believed lost
until the 1920’s when Bortolotti found the complete manuscript (not just the last part,
but also the first in an unrevised version) of the work in codex B 1560 of the “Biblioteca
dell’Archiginnasio di Bologna.”

6 part I comprised of three “books”; part II of two.

" Bortolotti reached the conclusion that the manuscript he found in the Library of the
Archiginnasio in Bologna (containing the entirety Bombelli’s work, with both parts, the
algebraic and the geometrical, in the first, unrevised version) went back to that date.

8 1In the introduction of the printed work, Bombelli tells us that he and Pazzi had trans-
lated the first five chapters of Diophantus while Pazzi was lector at Rome, i.e., sometime
after 1567.



Here is a run-down of the contents of Bombelli’s five books. As we have already
mentioned, Bombelli’s great innovation was to have “solved” the “irreducible case” of the
general cubic polynomial; i.e., the case when the root of Dal Ferro’s formula for solving
cubic equations involves the square root of a negative number, a thing that at the time
was considered a monstrous absurdity (Cardano called the expression containing square
root of negative numbers “sophistic and far from the nature of numbers” and also “wild”).

Bombelli gives a definition of variable and notation for exponents. He studies mono-
mials, polynomials, and rules for calculating with them. He treats the equations from the
first to the fourth degree, and solves, among other things, all “42” possible cases of quartic
equations (improving on the work of Ferraro and Cardano). Following the practice of the
time he also gives a solid geometric demonstration of the solution of cubic equations in
terms of how a cube can be decomposed into two cubes and six parallelepipeds. Moreover,
noticing the analogy between this problem and the classic problem of the insertion of two
middle proportionals, he also offers his plane geometrical construction of the root of a cu-
bic equation which we will be discussing below. This construction is, perhaps, superfluous
for a cubic equation with only one real root, but necessary in the irreducible case where
the decomposition of the cube is impossible. In doing this Bombelli developed a geomet-
ric algebra (he refers to this as “algebra linearia”, that is to say linear algebra) which
has a distinctly cartesian flavor. For, at times, Bombelli seems to be making the claim
that geometry is not necessarily the only way to prove things: rather, certain geometric
constructions are grounded in the underlying algebra that represents these constructions.
Bombelli addresses the question of the relationship between the problem of the trisection
of the angle and that of the solution of the cubic equation in the irreducible case. In his
published treatise he expresses his intention to wuse the solution of the cubic equation in
the irreducible case to solve the angle-trisection problem.? This represents a change of
viewpoint from the earlier version of his manuscript where Bombelli simply maintained
that angle-trisection leads to cubic equations that cannot be solved.?

His treatise contains a collection of problems which include all the problems of the first
four books of Diophantus. L’Algebra remained for more than a century the fundamental
text of advanced algebra. It was studied, for example, by Huygens and Leibniz.

3. “Ho trovato un’altra sorte di R.c.legate molto differenti dall’altre ....”

Here is how the text!! continues. (We have shortened it a bit by putting the algebraic
formulae in modern notation.)

... I have found another kind of cubic root of a polynomial which is very different
from the others. This [cubic root] arises in the chapter dealing with the equation of the
kind =3 = px + q, when p®/27 > ¢*/4, as we will show in that chapter. This kind of
square root has in its calculation [algorismo] different operations than the others and has a

9 Bombelli (1966), p. 245.

10" Bombelli (1966), pp. 639-641.

11 Translation of pp 133-134 (in the Chapter On the division of a trinomial made by
cubic roots of polynomials and number).



different name. Since when p3/27 > ¢?/4, the square root of their difference can be called
neither positive nor negative, therefore I will call it ‘more than minus’ when it should be
added and ‘less than minus’ when it should be subtracted. This operation is extremely
necessary, more than the other cubic roots of polynomials, which comes up when we treat
the equations of the kind z* + ax® + b or z* + ax + b or * + az® + ax + b. Because, in
solving these equations, the cases in which we obtain this [new] kind of root many more
than the cases in which we obtain the other kind. [This new kind of root] will seem to
most people more sophistic than real. This was the opinion I held too, until I found its
geometrical proof (as it will be shown in the proof given in the above-mentioned chapter on

the plane). I will first treat multiplication, giving the law of plus and minus:*?

N N N N N~

Notice that this kind of root of polynomials cannot be obtained if not together with
their conjugate. For instance, the conjugate of v/2 + iv/2 will be v/2 — iv/2. It has never
happened to me to find one of these kinds of cubic root without its conjugate. It can also
happen that the second quantity [inside the cubic root] is a number and not a root (as we
will see in solving equations). Yet, [even if the second quantity is a number], an expression
like /2 + 2i cannot be reduced to only one monomial, despite the fact that both 2 and 2i
are numbers.

Commentary: The cube equal to a coefficient times the unknown plus a number refers
to the equation which in modern dress is:

:c3=pa:+q.

Here, p is the coefficient and q is the number. Bombelli prefers to think of his equations
having only positive numbers as coefficients, so will treat separately (in different chapters)

12 T a more literal translation of Bombelli’s words:

Plus times more than minus makes more than minus.
Minus times more than minus makes less than minus.
Plus times less than minus makes less than minus.
Minus times less than minus makes more than minus.
More than minus times more than minus makes minus.
More than minus times less than minus makes plus.
Less than minus times more than minus makes plus.
Less than minus times less than minus makes minus.



equations of the form 23 + pz = q etc., terms being assembled to the left or right of the
equality sign to arrange that p and g are positive. For efficiency, let us cheat, and peek at
the modern, but still pre-Galois, treatment of the general cubic equation

z3 = pr+4q:
If we formally factor the polynomial
3 —pr—q=(x—61)(z —0)(x — 65)
as a product of linear factors, we have that
01 +02+ 63 =0,
and A, the discriminant of the polynomial, i.e., the square of
(61 — 02)(02 — 03) (63 — 61),

is equal to
A = 4p® — 274,

which is positive if all three roots 61, 62,603 are real, and is negative if precisely one of them
is real. In any event, a “formula” for the real solution(s) to this polynomial is given by:

x:f/q/2+% —A/3 + {’/q/2—é\/T/3,

where if A is negative (and we are looking for the unique real solution) the above formula
has an unambiguous interpretation as a real number and gives the solution.

If, however, A is positive (which is what Bombelli is encountering when he considers
the case where the cube of ‘the third of the coeflicient’ is greater than the square of ‘half
the number’, or equivalently, where % — ’2’—2 is negative and % — ’2’—; is imaginary), the
above solution, i.e.,

3 ¢ p 3 ¢ p?
— {lg/2+4/L -2 94/ L 2
v \/q/ TVy T T \/q/ 4 927

involves imaginaries. To a modern eye, this expression is dangerously ambiguous, there
being three possible values for each of the cubic radicals in it: to have it “work”, of course,
you have to coordinate the cube roots involved. That is, to interpret the expression
correctly you must “yoke together” the two radicals in the above formula by taking them
to be complex conjugates of each other, and then, running through each of the three
complex cube roots of ¢/2 — %\/—A /3 you get the three real solutions.

4. Geometrical “demonstration”. Bombelli knows that any cubic polynomial has a
root. The (post-cartesian) argument (that a cubic polynomial p(x) takes on positive and
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negative values, is a continuous function of xz and therefore, as x ranges through all real
numbers, p(x) must traverse the value 0, at least once) is not in Bombelli’s vocabulary, but
as the reader will see, there remains a shade of this argument in Bombelli’'s geometrical
“demonstration”. Bombelli convinces himself that cubic polynomials have roots by two
distinct methods— the first by consideration of volumes in space, a method which does not
work in the irreducible case; and the second by consideration of areas in the plane, being
a method which does work in the irreducible case.!?

The method by consideration of volumes. Bombelli starts with a cube whose linear
dimension let us denote by . He then decomposes it into a sum of two cubes nesting in
opposite corners of the big cube, these being of linear dimensions, say, v and t — u, and
three parallelopipeds, following the algebraic formula:

(t —u)® + 3tu(t — u) = t* — u®.

Stripping the rest of Bombelli’s demonstration of its geometric language, here is how it
proceeds. Put p := 3tu and ¢ := t> — 43, and note that the quantity z := t —u is a solution
of the cubic equation

$3+pw:q.

Of course, if we have such an equation with given constants p,q > 0 we wish to solve,
we would first have to arrange to find the ¢ and the u that worked, but ignore this, and
let us proceed. Substituting

u=2L
3t
in the equation 3 — u® = ¢, we get
3
p
- =
o18 ~ b
or
3
p
0 —qt>3——-=0
q o7 )
which we think of as a quadratic equation in #3:
3
2 p
)" —q(t®) - - =0
) - q#) -2 =0,

and applying the quadratic formula (available, of course, in Bombelli’s time) to get

4p3
t3_qi\/q2+2L7

2 Y

13 For the first method see Bombelli (1966), pp. 226-228. For the second method see
Bombelli (1966), pp. 228-229.



i.e., Cardano’s formula for the solution z = t — £ of the cubic equations of the form

x3 4+ pxr = ¢q. All this is performable geometrically to actually produce the x only if t3 is a

real number. That is, this geometric demonstration doesn’t work in the irreducible case'®.

The method in the plane.

Bombelli’s second method resembles some of the neusis-constructions in ancient Greek
geometry— used in questions of angle-trisection (see 5 below) and indeed does work in the
irreducible case. Bombelli promotes this method (invoking of the august authority of the
ancient authors, who used similar methods) because, he claims, it provides a “geometric
demonstration” that his cubic radicals “exist”.

By a gnomon let us mean an “L-shaped” figure; i.e., two closed line segments joined
at a 90 degree angle at their common point (the verter). Bombelli uses a construction
with two gnomons (if that is the plural form of the word), one with vertex r and one with
vertex unfortunately labeled p in the diagram (taken from his manuscript) below.

q
P

n//

d a

e%g

r

He will construct such a diagram from the data of his cubic equation z® = pz + ¢,
i.e., from the pair of real numbers p and ¢ (from dimension considerations, we can expect
p to appear as an area, and ¢/p as a linear measurement). Let us calibrate the diagram
by putting
Im = unity.

14 This type of “decomposition of the cube” argument had already been used by Cardano
in the Ars Magna to explain how, for a particular equation (2% + 62 = 20) one can derive
his formula; Cardano never considered the irreducible case.
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Now by suitably moving the two gnomons, moving the first up and down and pivoting the
second about its vertex, Bombelli shows that one can obtain a diagram with

la ==,

4
p
and the area of the rectangle abfl equal to p, and moroever, for such a diagram, the root
x of his equation will appear as the length [i.

5. Neusis-constructions and the trisection of angles.

The problem of trisecting a general angle with the aid of no more than an unmarked
straight edge and compass as posed by the ancient Greek mathematicians is impossible.
The fact that (the general solution of) this problem is impossible was established only in
the beginning of the 19th century by Pierre Laurant Wantzel '® who also made explicit
the connection between trisection and solutions of cubic equations. But ancient mathe-
maticians had an assortment of methods of angle-trisection that made use of “equipment”
more powerful than mere compass and straight edge. One such method (referred to as
neusis: verging, inclination) useful for solving certain problems involves making (as in the
gnomon construction of Bombelli’s that we have just sketched) a plane geometric construc-
tion, or more precisely a “family of constructions” dependent upon a single parameter of
variation.'® In general, the strategy is to show that by “varying the construction” one
can arrange it so that two designated points on a specific line (of the construction) switch
their order on the line, under the variation. This then allows one to argue, in the spirit of
the modern intermediate value theorem, that there is a member of the family where the
two designated points actually coincide. One then applies the features of this particular
member of the family to help with the problem one wishes to solve.

In the Book of Lemmas Archimedes (III BC) trisects a general angle using a neusis
construction. (We do not have the original Greek of this work; we have an Arabic trans-
lation which does not seem to be completely faithful to the original Archimedean text.)
Hippias (end of the fifth century BC), instead, used a curve that he invented, the so-called
Quadratix of Hippias. By means of this curve one can divide a general angle in any number
of equal parts. Nicomedes (II BC) made his conchoid curve by means of a neusis construc-
tion and he used the conchoid to solve the problem of trisection. Apollonius (late III BC
- early IT BC) achieved angle-trisection using conics (the two cases we have, transmitted
to us by Pappus in his Mathematical Collection, use a hyperbola).

6. Suggestions. We feel that there are three distinct elements that contribute to
Bombelli’s “faith” in cubic radicals.

15 more specifically in 1837

16 For neusis see, for instance, Fowler (1987), 8.2; Heath (1921), 235-41, 65-68, 189-92,
412-13; Grattan-Guinness (1997), 85; Bunt, Jones and Bedient (1976), 103-106; Boyer and
Merzbach (1989), 151 and 162.
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First, Bombelli deals with the “inverse problem” and he does this in two ways: As
we mentioned above Bombelli does explicitly tell us, on occasion, what the cube root of a
specific number is (the cube root of 2 + 114/—1 is 2+ /—1) and thereby explicitly solves
an equation (e.g., * = 4 is a solution of 3 = 15z + 4 ) saying that if one follows his
geometrical method for the solution of this problem one obtains that same solution. But
he also may simply start with a sum of two yoked cubic radicals,

{‘/a+z'\/5+ \S/a—ix/é,

and discover the cubic equation of which this is a root.!” Since he has proven by his
geometric method that the cubic equation has a real solution, (in fact “three” of them) it
follows that this sum of two yoked cubic radicals, in some sense represents such a solution
(and, thus, in some sense, represents a number). But whether it represents one, or all
three, of the solutions is not dealt with. It would be difficult, in any case, for us to say
what it meant for Bombelli’s yoked cubic radicals to represent numbers for him, since they
don’t lead to the determination, or approximation of the number that they represent.

We have put quotation-marks around “three” when we discussed the “three” solutions
to the cubic equation in the irreducible case because Bombelli does not consider negative
solutions. Nevertheless, by appropriately transforming the equation, Bombelli is able to
turn negative solutions of an equation into positive solutions of the transformed equation.
See page 230 where Bombelli transforms the equation z3 + 2 = 3z into the equation
y® = 3y + 2, where y = —z, and pp. 230-231 where Bombelli divides 2 — 3z + 2 by z + 2
(y = 2). In his discussion of reducible cases of cubic polynomials, however, Bombelli talked
of their (single, real) root and was surely unaware of the possibility that there might be
“complex” interpretations of the relevant “yoked cubic radical” so as to provide the two
complex roots of the cubic polynomial.

Secondly, it seems to us that Bombelli gains confidence in the “existence” of his yoked
cubic radicals through his ability to perform algebraic operations with them, and thirdly,
by his increased understanding of the relationship between the solution of the general cubic
equation and the classical problem of angle-trisection. But it would be good to pin this
down more specifically than we have done so far.

APPENDICES:
A. Bombelli’s Preface.
To the reader
I know that I would be wasting my time if I tried to use mere finite words to explain

the infinite excellence of the mathematical disciplines. To be sure, the excellence of mathe-
matics has been celebrated by many rare minds and honored authors. Nevertheless, despite

17 ¢f. Bombelli (1966), p. 226 (the paragraph “Dimostrazione delle R.c. Legate con il
+di- e -di- in linea”.
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my shortcomings, I feel obliged to speak of the supremacy, among all the mathematical
disciplines, of the subject that is nowadays called algebra by the common people.

All the other mathematical disciplines must use algebra. In fact the arithmetician
and the geometer could not solve their problems and establish their demonstrations without
algebra; nor could the astronomer measure the heavens, and the degrees, and, together with
the cosmographer, find the intersection of circles and straight lines without having been
compelled to rely on tables made by others. These tables, having been printed over and
over again and, furthermore, by people with little knowledge of mathematics, are extremely
corrupted. Thus, anyone using them for calculation is certain to make an infinite number
of errors.

The musician, without algebra, can have little or no understanding of musical propor-
tion. And what about architecture? Only algebra gives us the way (by means of lines of
force) to build fortresses, war machines, and everything that can be measured: solid, and
proportions, as occurs when dealing with perspective and other aspects of architecture.

Algebra also allows us to understand the errors that can occur in architecture.

Setting all these (self-evident) things aside, I will say only this: either because of the
inherent difficulty of algebra, or because of the confused way that people write about it, the
more algebra is perfected the less I see people working on it. I have thought about this
situation for a long time and have not been able to figure out why. Many have said that
their hesitations with algebra stemmed from the distrust they had of it, not being able to
learn it, and from the ignorance that people generally have of algebra and of its use. But I
think rather that these people want only to protect themselves by making such ercuses. If
they were willing to tell the truth they should rather say that the real cause [of their lack
of interest in algebra/ is the weakness or roughness of their own minds. In fact, given that
all mathematics is concerned with speculation, one who is not speculative works hard, and
in vain, to learn mathematics. I do not deny that for the scholars of algebra a cause of
enormous suffering and an obstacle to understanding is the confusion created by writers
and by the lack of order that there is in this discipline.

Thus, to remove every obstacle to those who are speculative and who are in love with
this science, and to take every excuse away from the cowardly and inept, I turned my
mind to try to bring perfect order to algebra and to discuss everything about the subject
not mentioned by others. Thus, I started to write this work both to allow this science to
remain known and to be useful to everyone.

To accomplish this task more easily, I first set about to eramine what most of the
other authors had already written on the subject. My aim was to compensate for what they
missed. There are many such authors, the Arab Muhammad ibn Musa being considered the
first. Muhammad ibn Musa is the author of a minor work, not of great value. I believe that
the name “algebra” came from him. For the friar Luca Pacioli of Borgo del San Sepolcro
from the Minorite order, writing about algebra in both Latin and Italian, said that the name
“algebra” came from the Arabic, that its translation in our language was “position” and
that this science came from the Arabs. This, likewise, had been believed and said by those
who wrote after him.

Yet, in these past years, a Greek work on this discipline was found in the library of
our Lord in the Vatican. The author of this work is a certain Diophantus Alexandrine, a
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Greek who lived in the time of Antoninus Pius. Antonio Maria Pazzi, from Reggio, public
lector of mathematics in Rome, showed Diophantus’ work to me. To enrich the world with
such a work, we began to translate it. For we both judged Diophantus to be an author who
was extremely intelligent with numbers ( he does not deal with irrational numbers, but only
in his calculations does one truly see perfect order). We translated five books of the seven
that constitute his work. We could not finish the books that remained due to commitments
we both had. In this work we found that Diophantus often cites Indian authors. Thus,
I came to know that this discipline was known to the Indians before the Arabs. A good
deal after this, Leonardo Fibonacci wrote about algebra in Latin. After him and up to the
above mentioned Luca Pacioli there was no one who said anything of value. The friar Luca
Pacioli, although he was a careless writer and, therefore, made some mistakes, nevertheless
was the first to enlighten this science. This is so, despite the fact that there are those who
pretend to be originators, and ascribe to themselves all the honor, wickedly accusing the few
errors of the friar, and saying nothing about the parts of his work that are good. Coming
to our time, both foreigners and Italians wrote about algebra, as the French Oronce Finé,
Enrico Schreiber of Erfurt and “il Boglione”,'® the German Michele Stifel and a certain
Spaniard*®who wrote a great deal about algebra in his language.

However, truly, there had been no one who penetrated to the secret of the matter as
much as Gerolamo Cardano of Pavia did, in his Ars Magna where he spoke at length about
this science. Nevertheless, he did not speak clearly. Cardano treated this discipline also in
the “cartelli” that he wrote together with Lodovico Ferrari from Bologna against Niccolo
Tartaglia from Brescia. In these “cartelli” one sees extremely beautiful and ingenious
algebraic problems but very little modesty on the part of Tartaglia. Tartaglia was by his
own nature so accustomed to speaking ill that one might think he imagined that by doing
so he was honoring himself. Tartaglia offended most of the noble and intelligent thinkers
of our time, as he did Cardano and Ferrari both minds divine rather than human.

Others wrote about algebra and if I wanted to cite them all I would have to work a
great deal. However, given that their works have brought little benefit, I will not speak about
them. I only say (as I said) that having seen, thus, what of algebra had been treated by
the authors already mentioned, I too continued putting together this work for the common
benefit. This work is divided in three books. The first book includes the practical aspect
of Fuclid’s tenth book, the way of operating with cube roots and square roots; this mode
of operating with cube roots is useful when one deals with cubes, that is to say solids. In
the second book, I treated all the ways of operating in algebra where there are unknown
quantities, giving methods to solve their equations and geometrical proofs. In the third
book I posed (as a test for this science) about three hundred problems, so that the scholar
of this discipline {algebra} reading them could see how gently one may profit from this
science. Accept, thus, oh reader, accept my work with a mind free of every passion, and
try to understand it. In this way you will see how it will be of benefit to you. However,
I warn you that if you are unfamiliar with the basics of arithmetic, do not engage in the

18 Bortolotti, in a footnote on p. 9 of his edition of Bombelli’s text, says that “il Boglione”
is not identified.

19 According to Bortolotti, the Spaniard, although not clearly identified, is perhaps the
Portuguese Pietro Nunes. See Bombelli (1966) p 9.
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enterprise of learning algebra because you will lose time. Do not condemn me if you find in
the work some mistakes or corrections that do not come from me but from the printer. In
fact, even when all possible care is used, it is still impossible to avoid typographical errors.
Equally if you see some impropriety in the framing of my sentences, or a less than lovely
style do not consider it [harshly]. ... My only purpose (as I said earlier) is to teach the
theory and practice of the most important part of arithmetic (or algebra), which may God
like, it being in his praise and for the benefit of living beings.

B. A glossary of terms.

Agguagliare {equating}: to solve an equation

Agguagliatione {the equating}: the solving of an equation

Algorismo {algorithm}: a method for calculating

Avenimento {what happens}: the quotient of a division

Cavare {to extract}: to subtract

Censo : name of 22 (used in the manuscript, censo is substituted in
the published book by potenza that is to say “power”

Creatore {creator}: root

Cubato {cubed}: the cube of a number or of z

Cuboquadrato {squared cube}: the sixth power

Dignitd {dignities}: the powers of numbers or of z from the second power on

Esimo {-th}: a word used to express a fraction
For instance 2/4 is 2 esimo di 4 that is “2 th of 4”7, or “two fourths”.

Lato {side}: root

Nome {name}: monomial

Partire {to part}: to divide

Partitore {the one who parts}: divisor

Positione {position}: equation

Potenza {power}: x?

Quadrocubico {square cubic}: sixth power

Quadroquadrato {square squared}: fourth power

R.c. : it is the sign for “radice cubica” that is to say cubic root

R.c.L. or R.c. legata {linked cubic root}: it is the cubic root of a polynomial

R.q.: square root

R.q. legata {linked square root}: square root of a polynomial

R.q.c. or R.c.q. : the signs for “radice quadrocubica” and “radice cuboquadrata
that is to say the sixth root

R.R.q.: the sign for “radice quadroquadrata” that is to say the fourth root

Residuo {residue}: it is a binomial made by the difference of two monomials.
It thus used for the conjugate roots

Rotto {broken}: fraction

Salvare {to save}: to put a quantity aside for a moment for using it again later

Tanto {an unknown quantity}:

Trasmutatione {transmutation}: linear transformation of an equation

”
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Valuta {value}: the value of z
Via {by}: the sign for the multiplication
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