COMPLEX LINEAR 1D CASE. \(\dot{x} = \lambda x \) for \(\lambda = a+i b \) has solution \(x(t) = e^{at} e^{ibt} x(0) \) and norm \(\|x(t)\| = e^{at}\|x(0)\| \).

OSCILLATOR: The system \(\ddot{x} = -\lambda x \) has the solution \(x(t) = \cos(\sqrt{\lambda}t) x(0) + \sin(\sqrt{\lambda}t) \dot{x}(0)/\sqrt{\lambda} \).

DERIVATION. \(\dot{x} = y, \dot{y} = -\lambda x \) and in matrix form as
\[
\begin{bmatrix}
\dot{x} \\
\dot{y}
\end{bmatrix} = \begin{bmatrix}
0 & -1 \\
\lambda & 0
\end{bmatrix} \begin{bmatrix}
x \\
y
\end{bmatrix} = A \begin{bmatrix}
x \\
y
\end{bmatrix}
\]
and because \(A \) has eigenvalues \(\pm i \sqrt{\lambda} \), the new coordinates move as \(a(t) = e^{i \sqrt{\lambda}t} a(0) \) and \(b(t) = e^{-i \sqrt{\lambda}t} b(0) \).

Writing this in the original coodinates
\[
\begin{bmatrix}
x(t) \\
y(t)
\end{bmatrix} = S \begin{bmatrix}
a(t) \\
b(t)
\end{bmatrix}
\]
and fixing the constants gives \(x(t), y(t) \).

EXAMPLE. THE SPINNER. The spinner is a rigid body attached to a spring aligned around the z-axes. The body can rotate around the z-axes and bounce up and down. The two motions are coupled in the following way: when the spinner winds up in the same direction as the spring, the spring gets tightened and the body gets a lift. If the spinner winds up to the other direction, the spring becomes more relaxed and the body is lowered.

SETTING UP THE DIFFERENTIAL EQUATION.
\(x \) is the angle and \(y \) the height of the body. We put the coordinate system so that \(y = 0 \) is the point, where the body stays at rest if \(x = 0 \). We assume that if the spring is wound up with an angle \(x \), this produces an upwards force \(x \) and a momentum force \(-3 \times x\). We furthermore assume that if the body is at position \(y \), then this produces a momentum \(y \) onto the body and an upwards force \(y \).

The differential equations
\[
\begin{align*}
\dot{x} &= -3x + y \\
\dot{y} &= -y + x
\end{align*}
\]
can be written as \(\ddot{v} = Av = \begin{bmatrix}
-3 & 1 \\
1 & -1
\end{bmatrix} v \).

FINDING GOOD COORDINATES \(w = S^{-1} v \) is obtained with getting the eigenvalues and eigenvectors of \(A \): \(\lambda_1 = -2 - \sqrt{2} \), \(\lambda_2 = -2 + \sqrt{2} \)
\[
\begin{bmatrix}
v_1 \\
v_2
\end{bmatrix} = \begin{bmatrix}
-1 - \sqrt{2} \\
1
\end{bmatrix}, \begin{bmatrix}
v_1 \\
v_2
\end{bmatrix} = \begin{bmatrix}
-1 + \sqrt{2} \\
1
\end{bmatrix}
\]
so that
\[
S = \begin{bmatrix}
-1 - \sqrt{2} & -1 + \sqrt{2} \\
1 & 1
\end{bmatrix}.
\]

SOLVE THE SYSTEM \(\ddot{a} = \lambda_1 a, \ddot{b} = \lambda_2 b \) IN THE GOOD COORDINATES
\[
\begin{bmatrix}
a(t) \\
b(t)
\end{bmatrix} = S^{-1} \begin{bmatrix}
x(t) \\
y(t)
\end{bmatrix}.
\]

THE SOLUTION IN THE ORIGINAL COORDINATES.
\[
S \begin{bmatrix}
a(t) \\
b(t)
\end{bmatrix}.
\]
At \(t = 0 \) we know \(x(0), y(0), \dot{x}(0), \dot{y}(0) \). This fixes the constants in \(x(t) = A_1 \cos(\omega_1 t) + B_1 \sin(\omega_1 t) + A_2 \cos(\omega_2 t) + B_2 \sin(\omega_2 t) \).

ASYMPTOTIC STABILITY.
A linear system \(\ddot{x} = Ax \) in the 2D plane is asymptotically stable if and only if \(\det(A) > 0 \) and \(\text{tr}(A) < 0 \).

PROOF. If the eigenvalues \(\lambda_1, \lambda_2 \) of \(A \) are real then both being negative is equivalent with \(\lambda_1 \lambda_2 = \det(A) > 0 \) and \(\text{tr}(A) = \lambda_1 + \lambda_2 < 0 \). If \(\lambda_1 = a + ib, \lambda_2 = a - ib \), then a negative \(a \) is equivalent to \(\lambda_1 + \lambda_2 = 2a < 0 \) and \(\lambda_1 \lambda_2 = a^2 + b^2 > 0 \).
ASYMPTOTIC STABILITY COMPARISON OF DISCRETE AND CONTINUOUS SITUATION.
The trace and the determinant are independent of the basis, they can be computed fast, and are real if
A is real. It is therefore convenient to determine the region in the $\text{tr} - \text{det}$-plane, where continuous or
discrete dynamical systems are asymptotically stable. While the continuous dynamical system is related
to a discrete system, it is important not to mix these two situations up.

<table>
<thead>
<tr>
<th>Continuous dynamical system.</th>
<th>Discrete dynamical system.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stability of $\dot{x} = Ax$ ($x(t+1) = e^{A}x(t)$).</td>
<td>Stability of $x(t+1) = Ax$</td>
</tr>
</tbody>
</table>

- Stability in $\det(A) > 0, \text{tr}(A) > 0$
- Stability if $\text{Re}(\lambda_1) < 0, \text{Re}(\lambda_2) < 0.$

- Stability in $|\text{tr}(A)| - 1 < \det(A) < 1$
- Stability if $|\lambda_1| < 1, |\lambda_2| < 1.$

PHASE PORTRAITS. (In two dimensions we can plot the vector field, draw some trajectories)

- $\lambda_1 < 0, \lambda_2 < 0,$
i.e $A = \begin{bmatrix} -2 & 0 \\ 0 & -3 \end{bmatrix}$

- $\lambda_1 > 0, \lambda_2 > 0,$
i.e $A = \begin{bmatrix} 2 & 0 \\ 0 & 3 \end{bmatrix}$

- $\lambda_1 = 0, \lambda_2 = 0,$
i.e $A = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}$

- $\lambda_1 < 0, \lambda_2 > 0,$
i.e $A = \begin{bmatrix} -2 & 0 \\ 0 & 3 \end{bmatrix}$

- $\lambda_1 = 0, \lambda_2 < 0,$
i.e $A = \begin{bmatrix} 0 & 0 \\ 0 & -3 \end{bmatrix}$

- $\lambda_1 = a + ib, a < 0, \lambda_2 = a - ib,$
i.e $A = \begin{bmatrix} -1 & 1 \\ -1 & 0 \end{bmatrix}$

- $\lambda_1 = a + ib, a > 0, \lambda_2 = a - ib,$
i.e $A = \begin{bmatrix} 1 & 1 \\ -1 & 0 \end{bmatrix}$

- $\lambda_1 = ib, a < 0, \lambda_2 = -ib,$
i.e $A = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$