Throughout X is a compact Riemann surface.

Problem 1

Let $f : X \to \mathbb{P}^2$ be a holomorphic map from a compact Riemann surface to the projective plane whose image is not contained in a line. Show that $f(X)$ is an algebraic variety, i.e. show there is a homogeneous polynomial $F(Z_0, Z_1, Z_2)$ such that $f(X)$ is the zero locus of F. (Hint: use the fact that $\mathcal{M}(X)$ is a finite extension of $\mathbb{C}(z)$, where $z = Z_1/Z_0$.)

Solution

The assumption that $f(X)$ is not contained in a line implies that the function $z = Z_1/Z_0$ is a nonconstant meromorphic function on X. Since X is a compact Riemann surface, its field of functions $\mathcal{M}(X)$ is a finite extension of $\mathbb{C}(z)$. Let $w = Z_2/Z_0$. Since w lies in a finite extension of $\mathbb{C}(z)$, there is a polynomial $F(t) \in \mathbb{C}(z)[t]$ such that $F(w) = 0$. After clearing denominators, we may take $F(t)$ to be an element of $\mathbb{C}[z,t]$, and then after homogenizing, we may write $F(z,w) = F(Z_0, Z_1, Z_2)$. We still have that $F(Z_0, Z_1, Z_2)$ vanishes identically on $f(X)$.

The next step is to choose F so that $f(X)$ is the entire zero locus of F. Note that a function of degree d on \mathbb{P}^2 restricts to a section of a line bundle $\mathcal{O}(d)|_X$. Since F vanishes identically on X, it restricts to the zero section. So if F factors as a product of irreducible polynomials F_i of degrees d_i, then one of the polynomials F_i must vanish identically on X since otherwise F could vanish at at most $\deg F = \sum d_i$ points. Replacing F by some F_i if necessary, we may take F to be irreducible.

Let C be the vanishing locus of F. Then C is an irreducible, possibly singular, plane curve. Let \tilde{C} be a smooth resolution of C, it is a connected compact Riemann surface. Away from the singular points of C, the map f lifts to a map $\tilde{f} : X^* \to \tilde{C}$, and since \tilde{C} is a compact Riemann surface, this map must extend to a surjection $\tilde{f} : X \to \tilde{C}$. Since the resolution map $\pi : \tilde{C} \to C$ is also a surjection and since by continuity $\pi \circ \tilde{f} = f$, it follows that C is exactly equal to $f(X)$.
Problem 2

Let $\varphi : X \rightarrow \mathbb{P}^{g-1}$ be the canonical map. Show there is a representation $\rho : \text{Aut}(X) \rightarrow \text{Aut}(\mathbb{P}^{g-1})$ such that $\varphi(g \cdot x) = \rho(g) \cdot \varphi(x)$ for all $x \in X$ and $g \in \text{Aut}(X)$.

Solution

The codomain of the canonical map can be more naturally written as $\mathbb{P}H^0(K)^\ast$. If we identify a point in $\mathbb{P}H^0(K)^\ast$ with its kernel in $H^0(K)$, then the map φ_K is given by $\varphi_K(x) = \{\omega : \omega(x) = 0\}$.

There is also a natural representation ρ^* of $\text{Aut}(X)$ on $H^0(K)$ given by pullback: $\rho^*(g) \cdot \omega = (g^{-1})^* \omega$. The inverse makes this a left action. Let ρ be the projectivization of the dual of this representation: if H is a hyperplane in $H^0(K)$, then $\rho(g) \cdot H = \{(g^{-1})^* \omega : \omega \in H\}$.

Having written everything invariantly, it now follows immediately that

\[
\varphi(g \cdot x) = \{\omega : \omega(gx) = 0\} \\
= \{\omega : g^* \omega(x) = 0\} \\
= \{(g^{-1})^* \omega : \omega(x) = 0\} \\
= \rho(g) \cdot \{\omega : \omega(x) = 0\} \\
= \rho(g) \cdot \varphi(x).
\]

Problem 3

An involution on a complex manifold Z is an element f of order in $\text{Aut}(Z)$ is an element of order 2 in $\text{Aut}(Z)$.

1. Prove that the fixed-point set of any involution on \mathbb{P}^2 contains a line.

2. Show that every involution on a non-hyperelliptic Riemann surface X of genus 3 has a fixed point.

3. Give an example of a polynomial $p(x)$ of degree 8 such that the hyperelliptic Riemann surface X defined by $y^2 = p(x)$ admits a fixed-point free involution.

4. Let X be a Riemann surface of even genus. Show that every involution on X has a fixed point.

Solution

1. The automorphism group of \mathbb{P}^2 is $\text{PGL}_3(\mathbb{C}) = \text{GL}_3(\mathbb{C})/\mathbb{C}^\times$. Suppose f is an automorphism of order 2, represented by a matrix A, then A is not a scalar matrix but $A^2 = \lambda$ is. Thus A is diagonalizable and the eigenvalues are $\pm\sqrt{\lambda}$. Thus there is exactly one eigenvalue whose eigenspace has dimension 2. This subspace correspond to a line in \mathbb{P}^2 that is fixed by f.

Math 213br Solutions
2. Since X is a genus 3 non-hyperelliptic curve, the canonical map is an embedding $X \hookrightarrow \mathbb{P}(\Omega(X)^*)$. If f is an involution on X, by problem 2 it extends to an involution on \mathbb{P}^2, which therefore has a fixed line by the previous part. This line must intersect the image of X in the canonical map, hence f has a fixed point on X.

3. We take $p(x) = x^8 + 1$. The curve $y^2 = x^8 + 1$ has an involution $(x, y) \mapsto (-x, -y)$. It has no fixed point on the affine part, since a fixed point must have $x = y = 0$. On the other hand, the 2 points at infinity correspond to the asymptotics $y = x^4$ and $y = -x^4$. It is clear that the involution switches these two asymptics, so it doesn’t fixed any of the points at infinity either.

4. Suppose X as a fixed-point free involution, then the quotient map $X \to X/C = Y$ by the group C generated by the involution is a unramified everywhere double cover of Riemann surfaces. But then $\chi(X) = 2\chi(Y)$, so $2 - 2g_X = 2(2 - 2g_Y)$, so $g_X = 2g_Y - 1$ is odd, a contradiction.

Problem 4

Is there a nonconstant holomorphic map from the Fermat quartic, $x^4 + y^4 = 1$, to the octagon curve, $y^2 = x(x^4 - 1)$?

Solution

No, there is not. Observe that the Fermat quartic is smooth, and therefore is a canonically embedded curve of genus 3. The octagon curve is a hyperelliptic curve of genus 2. In fact, we’ll show that there is never a map from a non-hyperelliptic curve X of genus 3 to a curve Y of genus 2.

If there were a map from X to Y then the Riemann-Hurwitz formula would give $4 = 2d + \sum (n_p - 1)$, whence $d = 2$ and there are no points of ramification. Therefore, Galois conjugation, σ, would be a fixed-point free involution of X. This is a contradiction by the previous problem.

Problem 5

Prove or disprove: if X has genus 3 and X has a canonical divisor of the form $K = 4Q$ for some $Q \in X$, then X is hyperelliptic.

Solution

The statement is false. An example is given by the Fermat curve, X, of Problem 4, with $Q = P$. If we use the fact that the embedding of the Fermat curve is the canonical embedding, then we know that the linear function $x - z$ corresponds to a one-form on X which vanishes to order 4 at P, in other words to a holomorphic
section of $K - 4P$. Since $\deg(K - 4P) = 0$ and it has a holomorphic section, it is trivial, so we see that $K = 4P$.

We can also use Riemann Roch instead of using the fact that the embedding in Problem 4 is canonical. To do it this way, we observe that the functions $1/(x - 1)$ and $y/(x - 1)$ both vanish only at P, to orders 4 and 3 respectively. Together with the constant function 1, these give three independent elements of $H^0(4P)$. By Riemann Roch,

$$h^0(K - 4P) = 1 - g + h^0(4P) \geq 1,$$

and from there we see that $K = 4P$.

Problem 6

Let $S \subset \mathcal{M}(X)$ be a finite-dimensional subspace of dimension 1 or more, and define a divisor $D = \sum a_P \cdot P$ by

$$a_P = -\min_{f \in S} \text{ord}_P(f).$$

1. Prove that a_P is finite and $a_P = 0$ outside a finite set, so D is in fact a divisor.

2. Prove that for all nonzero $f \in S$, the map $f/g : X \to \mathbb{P}^1$ has degree equal to $\deg D$ for ‘most’ $g \in S$.

Solution

1. Choose a basis $\{f_i\}_i$ of S. Then because $\text{ord}_P(f + g) \geq \min \{\text{ord}_P(f), \text{ord}_P(g)\}$, we see that $a_P = -\min_i \text{ord}_P(f_i)$. Thus a_P is finite and is zero outside a finite set.

2. Given any point P, we can choose a basis $\{f_i\}_i$ of S with the property that $\text{ord}_P(f_i) < \text{ord}_P(f_1)$ for each $i > 1$ (to see this if there are two elements in the basis with the same minimal order at P, we can replace one of them by a linear combination that has larger order at P). This shows that if g is outside a proper subspace in S, $\text{ord}_P(g)$ is equal to the minimal order at P among all elements in S.

In particular, for most $g \in S$ we have the above property for all P in the support of D. We now compute the degree of f/g for such g. A zero of f/g must be either a zero of f or a pole of g. At all points P in the support of D, we have $\text{ord}_P(f/g) \geq 0$. If P is a zero of f/g not in the support of D, then P is not a zero or pole of g and must be a zero of f outside D. Thus the number of zeros of f/g is

$$\sum_{f(P) = 0, P \notin D} \text{ord}(f) + \sum_{P \in D} \text{ord}_P(f) - \text{ord}_P(g) = \deg \text{div}(f) + \deg D = \deg D,$$

where the first equality comes from the fact that any pole of f must occur in D.