QUALIFYING EXAMINATION
HARVARD UNIVERSITY
Department of Mathematics
Tuesday October 2, 2001 (Day 1)

Each question is worth 10 points, and parts of questions are of equal weight.
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Let X be a measure space with measure pu. Let f € L'(X,u). Prove
that for each € > 0 there exists 6 > 0 such that if A is a measurable

set with p(A) < 4§, then
[ 1f1du <
A

Let P be a point of an algebraic curve C' of genus g. Prove that any
divisor D with deg D = 0 is equivalent to a divisor of the form E — gP,
where £ > 0.

Let f be a function that is analytic on the annulus 1 < |z| < 2 and
assume that |f(z)| is constant on each circle of the boundary of the
annulus. Show that f can be meromorphically continued to C — {0}.

Prove that the rings Clz,y]/(z? — y™), m = 1,2,3,4, are all non-
isomorphic.

Show that the ellipsoid 22+ 2y%+322 = 1 is not isometric to any sphere
Yyt 2=

For each of the properties P, through P; listed below either show the
existence of a CW complex X with those properties or else show that
there doesn’t exist such a CW complex.

P1. The fundamental group of X is isomorphic to SL(2,Z).

P2. The cohomology ring H*(X,Z) is isomorphic to the graded ring
freely generated by one element in degree 2.

P3. The CW complex X is “finite” (i.e., is built out of a finite number
of cells) and the cohomology ring of its universal covering space is
not finitely generated.

P4. The cohomology ring H*(X,Z) is generated by its elements of
degree 1 and has nontrivial elements of degree 100.
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Prove that a general surface of degree 4 in P% contains no lines.

Let R be a ring. We say that Fermat’s last theorem is false in R if
there exists z,y,z € R and n € Z with n > 3 such that 2" + y" = 2"
and xyz # 0. For which prime numbers p is Fermat’s last theorem false
in the residue class ring Z/pZ?

Compute the integral

(e e}

/ cos(x) .
14 22

0

Let R = Z[x]/(f), where f = 2* — 23+ 22 — 22 + 4. Let I = 3R be the
principal ideal of R generated by 3. Find all prime ideals o of R that
contain I. (Give generators for each p.)

Let &4 be the symmetric group on four letters. Give the character
table of &4, and explain how you computed it.

Let X C R? and let f : X — R? be distance non-increasing. Show
that f extends to a distance non-increasing map f R? — R? such
that f |x = f. Does your construction of f necessarily use the Axiom

of Choice?

(Hint: Imagine that X consists of 3 points. How would you extend f
to X U {p} for any 4th point p?)
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Let S C P¥ be the surface defined by the equation XY — ZW = 0.
Find two skew lines on S. Prove that S is nonsingular, birationally
equivalent to P4, but not isomorphic to PZ.

Let f € C[z] be a degree n polynomial and for any positive real num-
ber R, let M(R) = max|;—r |f(2)|. Show that if R, > R; > 0, then

M (R5) < M(Ry)
Ry T Ry
with equality being possible only if f(z) = Cz", for some constant C'.

Describe, as a direct sum of cyclic groups, the cokernel of ¢ : Z3 — Z3
given by left multiplication by the matrix

3 ) 21
3 10 14
—24 —65 —126

Let X and Y be compact orientable 2-manifolds of genus g and h,
respectively, and let f : X — Y be any continuous map. Assuming that
the degree of f is nonzero (that is, the induced map f* : H*(Y,Z) —

H?(X,7Z) is nonzero), show that g > h.
Use the Rouché’s theorem to show that the equation ze*~* = 1, where
A is a given real number greater than 1, has exactly one root in the

disk |z| < 1. Show that this root is real.

Let f: R — R be a bounded function such that for all x and y # 0,

[f(z+y)+ flz —y) - 2f(2)]
||
for some finite constant B. Prove that for all x # vy,

)= sl < a1 o=l (1108 ().

where M depends on B and || f]|, and log™ (z) = max(0, log ).
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