QUALIFYING EXAMINATION
Harvard University
Department of Mathematics
Tuesday October 2, 2001 (Day 1)

Each question is worth 10 points, and parts of questions are of equal weight.

1a. Let X be a measure space with measure μ. Let $f \in L^1(X, \mu)$. Prove that for each $\epsilon > 0$ there exists $\delta > 0$ such that if A is a measurable set with $\mu(A) < \delta$, then

$$\int_A |f|d\mu < \epsilon.$$

2a. Let P be a point of an algebraic curve C of genus g. Prove that any divisor D with $\text{deg} D = 0$ is equivalent to a divisor of the form $E - gP$, where $E > 0$.

3a. Let f be a function that is analytic on the annulus $1 \leq |z| \leq 2$ and assume that $|f(z)|$ is constant on each circle of the boundary of the annulus. Show that f can be meromorphically continued to $\mathbb{C} - \{0\}$.

4a. Prove that the rings $\mathbb{C}[x,y]/(x^2 - y^m)$, $m = 1, 2, 3, 4$, are all non-isomorphic.

5a. Show that the ellipsoid $x^2 + 2y^2 + 3z^2 = 1$ is not isometric to any sphere $x^2 + y^2 + z^2 = r$.

6a. For each of the properties P_1 through P_4 listed below either show the existence of a CW complex X with those properties or else show that there doesn’t exist such a CW complex.

P1. The fundamental group of X is isomorphic to $\text{SL}(2, \mathbb{Z})$.

P2. The cohomology ring $H^*(X, \mathbb{Z})$ is isomorphic to the graded ring freely generated by one element in degree 2.

P3. The CW complex X is “finite” (i.e., is built out of a finite number of cells) and the cohomology ring of its universal covering space is not finitely generated.

P4. The cohomology ring $H^*(X, \mathbb{Z})$ is generated by its elements of degree 1 and has nontrivial elements of degree 100.
Each question is worth 10 points, and parts of questions are of equal weight.

1b. Prove that a general surface of degree 4 in \(\mathbb{P}^3_\mathbb{C} \) contains no lines.

2b. Let \(R \) be a ring. We say that Fermat’s last theorem is false in \(R \) if there exists \(x, y, z \in R \) and \(n \in \mathbb{Z} \) with \(n \geq 3 \) such that \(x^n + y^n = z^n \) and \(xyz \neq 0 \). For which prime numbers \(p \) is Fermat’s last theorem false in the residue class ring \(\mathbb{Z}/p\mathbb{Z} \)?

3b. Compute the integral

\[
\int_0^\infty \frac{\cos(x)}{1 + x^2} \, dx.
\]

4b. Let \(R = \mathbb{Z}[x]/(f) \), where \(f = x^4 - x^3 + x^2 - 2x + 4 \). Let \(I = 3R \) be the principal ideal of \(R \) generated by 3. Find all prime ideals \(\mathfrak{p} \) of \(R \) that contain \(I \). (Give generators for each \(\mathfrak{p} \).)

5b. Let \(\mathfrak{S}_4 \) be the symmetric group on four letters. Give the character table of \(\mathfrak{S}_4 \), and explain how you computed it.

6b. Let \(X \subset \mathbb{R}^2 \) and let \(f : X \to \mathbb{R}^2 \) be distance non-increasing. Show that \(f \) extends to a distance non-increasing map \(\hat{f} : \mathbb{R}^2 \to \mathbb{R}^2 \) such that \(\hat{f}|_X = f \). Does your construction of \(\hat{f} \) necessarily use the Axiom of Choice?

(Hint: Imagine that \(X \) consists of 3 points. How would you extend \(f \) to \(X \cup \{p\} \) for any 4th point \(p \)?)
QUALIFYING EXAMINATION
HARVARD UNIVERSITY
Department of Mathematics
Thursday October 4, 2001 (Day 3)

Each question is worth 10 points, and parts of questions are of equal weight.

1c. Let $S \subset \mathbb{P}^3_\mathbb{C}$ be the surface defined by the equation $XY - ZW = 0$. Find two skew lines on S. Prove that S is nonsingular, birationally equivalent to $\mathbb{P}^2_\mathbb{C}$, but not isomorphic to $\mathbb{P}^2_\mathbb{C}$.

2c. Let $f \in \mathbb{C}[z]$ be a degree n polynomial and for any positive real number R, let $M(R) = \max_{|z|=R} |f(z)|$. Show that if $R_2 > R_1 > 0$, then

$$\frac{M(R_2)}{R_2^n} \leq \frac{M(R_1)}{R_1^n},$$

with equality being possible only if $f(z) = Cz^n$, for some constant C.

3c. Describe, as a direct sum of cyclic groups, the cokernel of $\varphi : \mathbb{Z}^3 \to \mathbb{Z}^3$ given by left multiplication by the matrix

$$
\begin{bmatrix}
3 & 5 & 21 \\
3 & 10 & 14 \\
-24 & -65 & -126
\end{bmatrix}.
$$

4c. Let X and Y be compact orientable 2-manifolds of genus g and h, respectively, and let $f : X \to Y$ be any continuous map. Assuming that the degree of f is nonzero (that is, the induced map $f^* : H^2(Y, \mathbb{Z}) \to H^2(X, \mathbb{Z})$ is nonzero), show that $g \geq h$.

5c. Use the Rouche’s theorem to show that the equation $ze^{\lambda-z} = 1$, where λ is a given real number greater than 1, has exactly one root in the disk $|z| < 1$. Show that this root is real.

6c. Let $f : \mathbb{R} \to \mathbb{R}$ be a bounded function such that for all x and $y \neq 0$,

$$\frac{|f(x+y) + f(x-y) - 2f(x)|}{|y|} \leq B,$$

for some finite constant B. Prove that for all $x \neq y$,

$$|f(x) - f(y)| \leq M \cdot |x-y| \cdot \left(1 + \log^+ \left(\frac{1}{|x-y|}\right)\right),$$

where M depends on B and $\|f\|_\infty$, and $\log^+(x) = \max(0, \log x)$.

3